Skip to main content
Log in

Oxidation resistance and strength of a molybdenum fiber–oxide matrix composite material

  • Promising Materials and Technologies
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The oxidation kinetics of a composite material, which consists of an Al2O3–Al5Y3O12 matrix and molybdenum fibers and has a high cracking resistance, is studied. The mass loss of the composite material during oxidation is shown to be several orders of magnitude lower than that of molybdenum. Oxidation in quiet air at 1250°C for several hours weakly changes the strength of the composite material at temperatures from room temperature to 1300°C. It is also shown that the strength of the composite material as a function of the oxide matrix composition (Al: Y ratio) changes nonmonotonically. The maximum strength shifts from the Al2O3–Al5Y3O12 eutectic point toward garnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Di Carlo, H.-M. Yin, G. N. Morscher, and R. T. Bhatt, “SiC/SiC composites for 1200°C and above,” in Handbook of Ceramic Composite (Kluwer Academic, New York, 2005), Chapter 4, pp. 77–98.

    Google Scholar 

  2. K. L. Luthra, “Melt infiltrated SiC/SiC ceramic composites for industrial gas turbines and aircraft engines,” in Proceedings of 8th International Conference on High Temperature Ceramic Matrix Composites–HTCMC-8 (Xi’an, 2013).

    Google Scholar 

  3. KK. A. Keller, G. Jefferson, and R. J. Kerans, “Oxide–oxide composites,” in Proceedings of Conference on Ceramic Matrix Composites: Materials, Modelling and Technology, Ed. by N. P. Bansal and J. Lamon. doi 10.1002/9781118832998.ch8

  4. C. A. Botero, E. Jimenez-Piqué, R. Martin, T. Kulkarni, V. K. Sarin, and L. Llanes, “Influence of temperature and hot corrosion on the micro-nanomechanical behavior of protective mullite EBCs,” Int. J. Refract. Met. Hard Mater. 49, 383–391 (2015).

    Article  Google Scholar 

  5. V. I. Kazmin, S. T. Mileiko, and V. V. Tvardovsky, “Strength of ceramic matrix–metal fibre composites,” Compos. Sci. Tech. 38, 69–84 (1990).

    Article  Google Scholar 

  6. R. Sh. Askhadullin, O. G. Komlev, P. N. Martynov, A. A. Osipov, M. M. Trevgoda, and S. T. Mileiko, “High-temperature composites—materials for nuclear power plants with heavy liquid-metal coolants,” Kompozity Nanostruktury, No. 2, 18–23 (2012).

    Google Scholar 

  7. S. T. Mileiko and V. V. Tvardovsky, “Heuristic model of pseudomacrocracking in composites with brittle matrix,” Theor. Appl. Fract. Mech. 11, 157–167 (1989).

    Article  Google Scholar 

  8. D. B. Marshall and A. G. Evans, “The tensile strength of uniaxially reinforced ceramic fiber composites,” in Fracture Mechanics of Ceramics (Plenum Press, New York, 1986), Vol. 7, pp. 1–15.

    Chapter  Google Scholar 

  9. A. H. Cottrell, “Strong solids,” Proc. Roy. Soc. Lond. A 282, 2–9 (1964).

    Article  Google Scholar 

  10. J. M. Calderon-Moreno and M. Yoshimura, “Microstructure and mechanical properties of quasi-eutectic Al2O3–Y3Al5O12–ZrO2 ternary composite rapidly solidified from melt,” Mater. Sci. Eng. A 375–377, 1246–1249 (2004).

    Article  Google Scholar 

  11. K. Hirano, “Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700°C,” J. Eur. Ceram. Soc. 25, 1191–1199. doi 10.1016/j.jeurceramsoc.2005.01.003

  12. Haijun Su, Jun Zhang, Lin Liu, and Hengzhi Fu, “Microstructure and mechanical properties of a directionally solidified Al2O3/Y3Al5O12/ZrO2 hypoeutectic in situ composite,” Compos. Sci. Tech. 69, 2657–2667 (2009).

    Article  Google Scholar 

  13. S. T. Mileiko and N. I. Novokhatskaya, “Possibility of designing high-temperature heat-resistant composites with a refractory metallic matrix,” Kompozity Nanostruktury, No. 4, 5–14 (2012).

    Google Scholar 

  14. S. T. Mileiko and N. I. Novokhatskaya, “High temperature oxide-fibre/molybdenum-matrix composites of improved oxidation resistance,” J. Mater. Eng. Perform. 24, 2836–2840 (2015).

    Article  Google Scholar 

  15. Phase Equilibria Diagrams. ACerS–NIST Version 3, CD-ROM Database, 2.

  16. Y. Mizutania, H. Yasuda, I. Ohnaka, N. Maeda, and Y. Waku, “Coupled growth of unidirectionally solidified Al2O3–YAG eutectic ceramics,” J. Crystal Growth 244, 384–392 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Mileiko.

Additional information

Original Russian Text © S.T. Mileiko, N.I. Novokhatskaya, N.A. Prokopenko, A.A. Kolchin, A.Ya. Mitskevich, V.A. Chumichev, I.V. Novikov, 2016, published in Deformatsiya i Razrushenie Materialov, 2016, No. 4, pp. 2–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mileiko, S.T., Novokhatskaya, N.I., Prokopenko, N.A. et al. Oxidation resistance and strength of a molybdenum fiber–oxide matrix composite material. Russ. Metall. 2016, 912–917 (2016). https://doi.org/10.1134/S0036029516100116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516100116

Keywords

Navigation