Skip to main content
Log in

Defective structure, plastic properties, and reactivity of mechanically activated magnesium

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The genesis of a defective structure (particle size, size of coherent scattering regions (CSRs), dislocation concentrations, and two types of deformation and twin stacking defects (SDs)) of magnesium during its mechanical activation in a vibrating mill in the presence of liquid additions was studied by X-ray diffraction (XRD) analysis, microscopy, and adsorption (BET) method. The dynamic mechanical properties were checked for the activated samples using a K-44-2 vertical impact machine. The ability of magnesium to be oxidized in air was checked by heating it in the cell of a differential scanning calorimeter. At mechanical activation doses of less than 5 kJ/g, the accumulation of chaotically arranged dislocations and deformation SDs was accompanied by an increase in the plasticity of the material. At higher doses, polygonization of dislocations led to a drastic decrease in the CSR size and dislocation run, leading to embrittlement of the material. The changes in the mechanical properties were confirmed by symbatic changes in the outer particle size and showed themselves on the pressure oscillograms during the impulse loading of pressed Mg layers. Mechanical activation led to an increase in the level of oxidation of magnesium with oxygen, but did not affect the temperature of the start of oxidation. A method for activating magnesium with additions was suggested and led to the formation of highly disperse magnesium samples with the oxidation temperature lowered by 150°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev, and A. N. Streletskii, RF Patent No. 2235085, Byull. Izobret. No. 24 (2004).

    Google Scholar 

  2. A. Yu. Dolgoborodov, M. N. Makhov, A. N. Streletskii, et al., Khim. Fiz. 23(9), 85 (2004).

    Google Scholar 

  3. A. Yu. Dolgoborodov, A. N. Streletskii, M. N. Makhov, et al., Russ. J. Phys. Chem. B 1, 606 (2007).

    Article  Google Scholar 

  4. A. Y. Dolgoborodov, A. N. Streletskii, I. V. Kolbanev, et al., in Proceedings of the 14th International Detonation Symposium, Office of Naval Research 351-10-185 (Coeur d’Alene, Idaho, 2010), p. 816.

    Google Scholar 

  5. A. Yu. Dolgoborodov, A. N. Streletskii, M. N. Makhov, et al., Russ. J. Phys. Chem. B 6, 523 (2012).

    Article  CAS  Google Scholar 

  6. E. Dreizin, Progress Energy Combust. Sci. 35, 141 (2009).

    Article  CAS  Google Scholar 

  7. E. Dreizin and M. Schoenitz, US Patent No. 7524355 B2 (2009).

  8. D. Stamatis, E. Dreizin, and K. Higa, Combust. Flame 158, 1631 (2011).

    Article  CAS  Google Scholar 

  9. Y. Wang, W. Jiang, X. Zhang, et al., Thermochim. Acta 512, 233 (2011).

    Article  CAS  Google Scholar 

  10. Y. Wang, W. Jiang, L. Liang, et al., Rare Metal Mater. Eng. 41, 9 (2012).

    Article  Google Scholar 

  11. K. W. Watson, M. L. Pantoya, and V. I. Levitas, Combust. Flame 155, 619 (2008).

    Article  CAS  Google Scholar 

  12. A. N. Streletskii, in Proceedings of the 2nd International Conference on Structural Applications of Mechanical Alloying, Ed. by J. J. de Barbadillo, F. H. Froes, and R. Swartz (ASM Intern., Vancouver, Canada, 1993), p. 51.

  13. R. Krishnan, Zs. Metallk. 58, 811 (1967).

    CAS  Google Scholar 

  14. B. E. Warren, Prog. Metall. Phys. 8, 147 (1958).

    Article  Google Scholar 

  15. A. S. Shishmakov, D. A. Mirzaev, Yu. F. Khmelinin, and R. A. Adamesku, Fiz. Met. Metalloved. 37, 313 (1974).

    CAS  Google Scholar 

  16. G. T. Afanas’ev and V. K. Bobolev, Impact Initiation of Solid Explosives (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  17. Ya. S. Umanskii, Yu. A. Skakov, A. M. Ivanov, and L. I. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  18. V. A. Teselkin, A. N. Streletskii, I. V. Kolbanev, and A. Yu. Dolgoborodov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2010), Vol. 3, p. 292 [in Russian].

  19. V. A. Teselkin, in Proceedings of the 4th Symposium on Combustion and Explosion (Inst. Prikl. Khim. Fiz. RAN, Chernogolovka, 2008), p. 181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Streletskii.

Additional information

Original Russian Text © A.N. Streletskii, I.V. Kolbanev, V.A. Teselkin, A.V. Leonov, S.N. Mudretsova, M.V. Sivak, A.Yu. Dolgoborodov, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 2, pp. 91–100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streletskii, A.N., Kolbanev, I.V., Teselkin, V.A. et al. Defective structure, plastic properties, and reactivity of mechanically activated magnesium. Russ. J. Phys. Chem. B 9, 148–156 (2015). https://doi.org/10.1134/S1990793115010194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115010194

Keywords

Navigation