Skip to main content
Log in

Bifurcations of Essential Spectra Generated by a Small Non-Hermitian Hole. I. Meromorphic Continuations

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper focuses on bifurcations that occur in the essential spectrum of certain non-Hermitian operators. We consider the eigenvalue problem for a self-adjoint elliptic differential operator in a multidimensional tube-like domain which is infinite along one dimension and can be bounded or unbounded in other dimensions. This self-adjoint eigenvalue problem is perturbed by a small hole cut out of the domain. The boundary of the hole is described by a non-Hermitian Robin-type boundary condition. The main result of the present paper states the existence and describes the properties of local meromorphic continuations of the resolvent of the operator in question through the essential spectrum. The continuations are constructed near the edge of the spectrum and in the vicinity of certain internal threshold points of the spectrum. Then we define the eigenvalues and resonances of the operator as the poles of these continuations and prove that both the edge and the internal thresholds bifurcate into eigenvalues and/or resonances. The total multiplicity of the eigenvalues and resonances bifurcating from internal thresholds can be up to twice larger than the multiplicity of the thresholds. In other words, the perturbation can increase the total multiplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. C. M. Bender, “Making Sense of Non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018.

    Article  ADS  MathSciNet  Google Scholar 

  2. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian Physics and PT Symmetry”, Nature Physics, 14 (2018), 11–19.

    Article  ADS  Google Scholar 

  3. R. El-Ganainy, M. Khajavikhan, D. N. Christodoulides, and S. K. Ozdemir, “The Dawn of Non-Hermitian Optics”, Communications Physics, 2 (2019), 37.

    Article  ADS  Google Scholar 

  4. X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, “\( {PT} \)-Symmetric Acoustics”, Phys. Rev. X, 4 (2014), 031042.

    Google Scholar 

  5. J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, “Acoustic Coherent Perfect Absorbers”, New J. Phys., 16 (2014), 033026.

    Article  ADS  Google Scholar 

  6. R. Livi, R. Franzosi, and G.-L. Oppo, “Self-Localization of Bose–Einstein Condensates in Optical Lattices Via Boundary Dissipation”, Phys. Rev. Lett., 97 (2006), 060401.

    Article  ADS  Google Scholar 

  7. A. Müllers, B. Santra, C. Baals, J. Jiang, J. Benary, R. Labouvie, D. A. Zezyulin, V. V. Konotop, and H. Ott, “Coherent Perfect Absorption of Nonlinear Matter Waves”, Sci. Adv., 4 (2018), eaat6539.

    Article  ADS  Google Scholar 

  8. V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear Waves in \( {PT} \)-Symmetric Systems”, Rev. Mod. Phys., 88 (2016), 035002.

    Article  ADS  Google Scholar 

  9. W. D. Heiss, “The Physics of Exceptional Points”, J. Phys. A: Math. Theor., 45 (2011), 444016.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Mostafazadeh, Physics of Spectral Singularities, in Geometric Methods in Physics (Birkhäuser, Cham), 2015.

    Book  MATH  Google Scholar 

  11. J. Yang, “Classes of Non-Parity-Time-Symmetric Optical Potentials with Exceptional-Point-Free Phase Transitions”, Opt. Lett., 42 (2017), 4067–4070.

    Article  ADS  Google Scholar 

  12. V. V. Konotop and D. A. Zezyulin, “Phase Transition through the Splitting of Self-Dual Spectral Singularity in Optical Potentials”, Opt. Lett., 42 (2017), 5206–5209.

    Article  ADS  Google Scholar 

  13. D. I. Borisov, D. A. Zezyulin, and M. Znojil, “Bifurcations of Thresholds in Essential Spectra of Elliptic Operators under Localized Non-Hermitian Perturbations”, Stud. Appl. Math., 146 (2021), 834–880.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. V. Kartashov, C. Milián, V. V. Konotop, and L. Torner, “Bound States in the Continuum in a Two-Dimensional PT-Symmetric System”, Opt. Lett., 43 (2018), 575–578.

    Article  ADS  Google Scholar 

  15. B. Midya and V. V. Konotop, “Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons”, Phys. Rev. Lett., 119 (2017), 033905.

    Article  ADS  Google Scholar 

  16. T. B. A. Senior, “Impedance Boundary Conditions for Imperfectly Conducting Surfaces”, Appl. Sci. Res., 8 (1960), 418.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press Ltd, New York, 1963.

    Google Scholar 

  18. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Press, 1995.

    Book  MATH  Google Scholar 

  19. D. A. Hill, Electromagnetic Fields in Cavities. Deterministic and Statistical Theories, John Wiley & Sons, Inc., New York, 2009.

    Book  Google Scholar 

  20. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Fourth Edition, Springer, 2019.

    Book  MATH  Google Scholar 

  21. H.-C. Kaiser, H. Neidhardt, and J. Rehberg, “Macroscopic Current Induced Boundary Conditions for Schrödinger-Type Operators”, Integral. Equations Operator Theory, 45 (2003), 39–63.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Ammari, A. Dabrowski, B. Fitzpatrick, and P. Millien, “Perturbation of the Scattering Resonances of an Open Cavity by Small Particles. Part I: the Transverse Magnetic Polarization Case”, Z. Angew. Math. Phys., 71 (2020), 102.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Longhi, “Bound States in the Continuum in \( {PT} \)-Symmetric Optical Lattices”, Opt. Lett., 39 (2014), 1697–1700.

    Article  ADS  Google Scholar 

  24. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1992.

    Book  MATH  Google Scholar 

  25. V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskii, “Asymptotic Expansions of the Eigenvalues of Boundary Value Problems for the Laplace Operator in Domains with Small Holes”, Math. USSR-Izv., 24 (1985), 321–345.

    Article  MATH  Google Scholar 

  26. V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskii, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Birkhäuser, Basel, 2000.

    Book  MATH  Google Scholar 

  27. D. Borisov, “On a \({PT}\)-Symmetric Waveguide with a Pair of Small Holes”, Proceedings of Steklov Institute of Mathematics, 281:1 (2013), 5–21.

    Article  MathSciNet  Google Scholar 

  28. R. R. Gadyl’shin, “On Regular and Singular Perturbations of Acoustic and Quantum Waveguides”, C.R. Méch., 332 (2004), 647–652.

    Article  ADS  MATH  Google Scholar 

  29. S. A. Nazarov, “Variational and Asymptotic Methods for Finding Eigenvalues below the Continuous Spectrum Threshold”, Siberian Math. J., 51 (2010), 866–878.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. A. Nazarov, “Asymptotics of Trapped Modes and Eigenvalues below the Continuous Spectrum of a Waveguide with a Thin Shielding Obstacle”, St. Petersburg Math. J., 23 (2012), 571–601.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Borisov, “Asymptotic Behaviour of the Spectrum of a Waveguide with Distant Perturbation”, Math. Phys. Anal. Geom., 10 (2007), 155–196.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. I. Borisov, “Distant Perturbations of the Laplacian in a Multi-Dimensional Space”, Ann. Henri Poincaré, 8 (2007), 1371–1399.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. D. Borisov and D. Krejčiřík, “The Effective Hamiltonian for Thin Layers with Non-Hermitian Robin-Type Boundary Conditions”, Asymptot. Anal., 76 (2012), 49–59.

    MathSciNet  MATH  Google Scholar 

  34. D. Borisov, “Discrete Spectrum of Thin \({PT}\)-Symmetric Waveguide”, Ufa Math. J., 6 (2014), 29–55.

    Article  MathSciNet  Google Scholar 

  35. D. Borisov, “Emergence of Eigenvalue for \({PT}\)-Symmetric Operator in Thin Strip”, Math. Notes, 98 (2015), 827–883.

    Article  MathSciNet  Google Scholar 

  36. D. I. Borisov and M. Znojil, “On Eigenvalues of a \({PT}\)-Symmetric Operator in a Thin Layer”, Sb. Math., 208 (2017), 173–199.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. I. Borisov and A. I. Mukhametrakhimova, “On Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes”, J. Math. Sci., 232 (2018), 283–298.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Borisov, G. Cardone, and T. Durante, “Homogenization and Uniform Resolvent Convergence for Elliptic Operators in a Strip Perforated along a Curve”, Proc. Roy. Soc. Edinburgh Sec. A Math., 146 (2016), 1115–1158.

    Article  MATH  Google Scholar 

  39. A. Majda, “Outgoing Solutions for Perturbation of \(- \Delta \) with Applications to Spectral and Scattering Theory”, J. Diff. Equat., 16 (1974), 515–547.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. D. Borisov, “Discrete Spectrum of a Pair of Non-Symmetric Waveguides Coupled by a Window”, Sb. Math., 197 (2006), 475–504.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Borisov, “On Spectrum of Two-Dimensional Periodic Operator with Small Localized Perturbation”, Izv. Math., 75 (2011), 471–505.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. I. Borisov and D. A. Zezyulin, “Bifurcations of Essential Spectra Generated by a Small Non-Hermitian Hole. II. Eigenvalues and Resonances”, Russ. J. Math. Phys., :(submitted).

    Google Scholar 

Download references

Acknowledgments

The research is supported by the Russian Science Foundation (grant No. 20-11-19995).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. I. Borisov or D. A. Zezyulin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, D.I., Zezyulin, D.A. Bifurcations of Essential Spectra Generated by a Small Non-Hermitian Hole. I. Meromorphic Continuations. Russ. J. Math. Phys. 28, 416–433 (2021). https://doi.org/10.1134/S1061920821040026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920821040026

Navigation