Skip to main content
Log in

Variational and Asymptotic Methods for Finding Eigenvalues below the Continuous Spectrum Threshold

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Considering the example of a mixed boundary value problem for the Helmholtz operator we discuss two methods for finding eigenvalues below the continuous spectrum threshold: one variational and the other—asymptotic. We construct asymptotics for the eigenvalue arising near the threshold as a small obstacle appears in the cylindrical waveguide. The resulting asymptotic formula, its derivation and justification differ substantially from the case of a bounded domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York etc. (1985).

    Google Scholar 

  2. Birman M. Sh. and Solomyak M. Z., Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publ. Co., Dordrecht (1987).

    Google Scholar 

  3. Alonso A. and Simon B., “The Birman-Krein-Vishik theory of selfadjoint extensions of semibounded operators,” J. Operator Theory, 4, No. 2, 251–270 (1980).

    MATH  MathSciNet  Google Scholar 

  4. Nazarov S. A., “Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces,” Math. USSR-Sb., 65, No. 1, 229–247 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  5. Nazarov S. A., “Selfadjoint extensions of the operator of the Dirichlet problem in a 3-dimensional region with an edge,” J. Appl. Industr. Math., 3, No. 3, 377–390 (2009).

    Article  Google Scholar 

  6. Kamotskiĭ I. V. and Nazarov S. A., “Elastic waves localized near periodic families of defects,” Dokl. Phys., 44, No. 10, 715–717 (1999).

    MATH  MathSciNet  Google Scholar 

  7. Kamotskiĭ I. V. and Nazarov S. A., “Exponentially decreasing solutions of diffraction problems on a rigid periodic boundary,” Math. Notes, 73, No. 1, 129–131 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. Mazja W. G., Nasarow S. A., and Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 2, Akademie-Verlag, Berlin (1991).

    Google Scholar 

  9. Il’in A. M., Matching Asymptotic Expansions for Solutions of Boundary Value Problems [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  10. Jones D. S., “The eigenvalues of ▽ 2u + λu = 0 when the boundary conditions are given on semi-infinite domains,” Proc. Cambridge Philos. Soc., 49, 668–684 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonnet-Bendhia A.-S. and Starling F., “Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem,” Math. Methods Appl. Sci., 77, 305–338 (1994).

    Article  MathSciNet  Google Scholar 

  12. Evans D. V., Levitin M., and Vassiliev D., “Existence theorems for trapped modes,” J. Fluid Mech., 261, No. 1, 21–31 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  13. Sukhinin S. V., “Waveguide, anomalous, and whispering properties of a periodic chain of obstacles,” Sibirsk. Zh. Industr. Mat., 1, No. 2, 175–198 (1998).

    MATH  MathSciNet  Google Scholar 

  14. Kamotskiĭ I. V. and Nazarov S. A., “The augmented scattering matrix and exponentially decaying solutions of an elliptic problem in a cylindrical domain,” J. Math. Sci. (New York), 111, No. 4, 3657–3666 (2002).

    Article  MathSciNet  Google Scholar 

  15. Nazarov S. A., “A criterion for the existence of decaying solutions in the problem on a resonator with a cylindrical waveguide,” Funct. Anal. Appl., 40, No. 2, 97–107 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  16. Linton C. M. and McIver P., “Embedded trapped modes in water waves and acoustics,” Wave Motion, 45, 16–29 (2007).

    Article  MathSciNet  Google Scholar 

  17. Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains,” Sobolev Spaces in Mathematics. II (Maz’ya V., Ed.), 2008, pp. 261–309 (Intern. Math. Ser.; V. 9).

    Google Scholar 

  18. Gindikin S. G., Tales of Mathematicians and Physicists, Springer-Verlag, Berlin (2007).

    MATH  Google Scholar 

  19. Linton C. M. and McIver P., “The existence of Rayleigh-Bloch surface waves,” J. Fluid Mech., 470, 85–90 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  20. Maz’ya V. G., Nazarov S. A., and Plamenevskiĭ B. A., “Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes,” Math. USSR-Izv., 24, No. 2, 321–345 (1985).

    Article  MATH  Google Scholar 

  21. Polya G. and Szegö G., Isoperimetric Inequalities in Mathematical Physics [Russian translation], Fizmatgiz, Moscow (1962).

    MATH  Google Scholar 

  22. Kondrat’ev V. A., “Boundary value problems for elliptic equations in domains with conical or angular points,” Trudy Moskov. Mat. Obshch., 16, 209–292 (1967).

    MATH  Google Scholar 

  23. Nazarov S. A. and Plamenevsky B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin and New York (1994).

    MATH  Google Scholar 

  24. Maz’ya V. G. and Plamenevskiĭ B. A., “On coefficients in asymptotic expansions of solutions to elliptic boundary value problems in domains with conical points,” Math. Nachr., Bd 76, 29–60 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  25. Maz’ya V. G. and Nazarov S. A., “Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains,” Math. USSR-Izv., 29, No. 3, 511–533 (1987).

    Article  MATH  Google Scholar 

  26. Vishik M. I. and Lyusternik L. A., “Regular degeneration and a boundary layer for linear differential equations with a small parameter,” Uspekhi Mat. Nauk, 12, No. 5, 3–122 (1957).

    MATH  MathSciNet  Google Scholar 

  27. Nazarov S. A. and Sokolowski J., “Spectral problems in shape optimization. Singular boundary perturbations,” Asymptotic Anal., 56, No. 3-4, 159–196 (2008).

    MATH  MathSciNet  Google Scholar 

  28. Kamotskiĭ I. V. and Nazarov S. A., “Spectral problems in singularly perturbed domains and self-adjoint extensions of differential operators,” Trans. Amer. Math. Soc. Ser. 2, 199, 127–181 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Original Russian Text Copyright © 2010 Nazarov S. A.

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 51, No. 5, pp. 1086-1101, September-October, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. Variational and Asymptotic Methods for Finding Eigenvalues below the Continuous Spectrum Threshold. Sib Math J 51, 866–878 (2010). https://doi.org/10.1007/s11202-010-0087-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-010-0087-3

Keywords

Navigation