Supercontinuum generation in all-solid photonic crystal fiber with low index core

Abstract

In this paper we report on the fabrication and characterization of an all-solid photonic band gap fiber with high contrast and low index core. The fiber cladding is composed of high index lead-silicate rods while borosilicate NC21 glass is used as a background glass. A 70 nm wide photonic band gap at 875 nm central wavelength is experimentally identified and compared with a numerical model. We also present a novel method for photonic band gap measurement using a femtosecond pulsed laser. The method is verified against standard one and discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Z. Yang, X. H. Hu, Y. S. Wang, W. Zhang, and W. Zhao, Laser Phys. 21, 704 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, Laser Phys. 21, 1629 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    M. R. A. Moghaddam, S. W. Harun, R. Akbari, and H. Ahmad, Laser Phys. Lett. 8, 369 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    S. W. Harun, R. Akbari, H. Arof, and H. Ahmad, Laser Phys. 21, 1215 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    B. Zhang, J. Hou, P. Z. Liu, A. J. Jin, and Z. F. Jiang, Laser Phys. 21, 1895 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    G. S. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, Laser Phys. 21, 1115 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, Laser Phys. Lett. 7, 666 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    D. A. Sidorov-Biryukov, K. A. Kudinov, A. A. Podshivalov, and A. M. Zheltikov, Laser Phys. Lett. 7, 355 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    I. V. Fedotov, A. A. Lanin, A. A. Voronin, V. V. Grigor’ev, A. K. Mityurev, N. P. Khatyrev, V. E. Kravtsov, D. A. Sidorov-Biryukov, S. V. Tikhomirov, A. B. Fedotov, and A. M. Zheltikov, Laser Phys. Lett. 9, 39 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, Opt. Express 17, 10 393 (2009).

    Article  Google Scholar 

  11. 11.

    A. Betourne, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, Opt. Lett. 34, 3083 (2009).

    Article  Google Scholar 

  12. 12.

    A. M. Zheltikov, Laser Phys. Lett. 1, 220 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, Opt. Express 11, 2225 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D.M. Bird, J. C. Knight, and P. St. J. Russell, Opt. Lett. 29, 2369 (2004).

    ADS  Article  Google Scholar 

  15. 15.

    A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, Opt. Express 13, 309 (2005).

    ADS  Article  Google Scholar 

  16. 16.

    G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, Opt. Express 13, 8452 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, Opt. Lett. 32, 1023 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber and Integrated Optics 24, 27 (2009).

    ADS  Article  Google Scholar 

  19. 19.

    A. H. Al-Janabi and E. Wintner, Laser Phys. Lett. 2, 137 (2005).

    ADS  Article  Google Scholar 

  20. 20.

    J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, Laser Phys. Lett. 4, 444 (2007).

    ADS  Article  Google Scholar 

  21. 21.

    A. D. Bessonov and A. M. Zheltikov, Laser Phys. 16, 970 (2006).

    ADS  Article  Google Scholar 

  22. 22.

    X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, Laser Phys. 21, 198 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngso, and J. Broeng, Opt. Express 17, 447 (2009).

    ADS  Article  Google Scholar 

  24. 24.

    T. Taru, J. Hou, and J. C. Knight, in Proceedings of 33rd European Conference on Optical Communication (ECOC), Berlin, Germany, 2007, 7.1.1.

  25. 25.

    A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Laser Phys. Lett. 4, 775 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    Kurkov, E. M. Sholokhov, and Ya. E. Sadovnikova, Laser Phys. Lett. 8, 598 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, Laser Phys. Lett. 8, 443 (2011).

    Article  Google Scholar 

  28. 28.

    H. Ahmad, N. A. Awang, M. Z. Zulkifli, K. Thambiratnam, M. C. Paul, S. Das, and S. W. Harun, Laser Phys. Lett. 9, 44 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, Laser Phys. Lett. 8, 754 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and L. N. Duan, Laser Phys. 21, 1797 (2011).

    ADS  Article  Google Scholar 

  31. 31.

    L. N. Duan, X. M. Liu, L. R. Wang, D. Mao, and G. X. Wang, Laser Phys. 21, 1813 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    A. Fernández, L. Zhu, A. J. Verhoef, D. Sidorov-Biryukov, A. Pugzlys, A. Galvanauskas, F. A. Baltuška, Laser Phys. 21, 1329 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    J. M. Lazaro, B. T. Kuhlmey, J. C. Knight, J. M. Lopez-Higuera, and B. J. Eggleton, Opt. Commun. 282, 2358 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    G. Ren, P. Shum, J. J. Hu, X. Yu, and Y. Gong, Opt. Lett. 32, 3059 (2007).

    ADS  Article  Google Scholar 

  35. 35.

    I. Kujawa, D. Pysz, R. Buczynski, A. Filipkowski, J. Nowosielski, and R. Stepien, in Proceedings of SPIE Conference Optical Fibers and Their Applications, Bialystok, Poland, 2008, pp. 7120, 71200L.

    Google Scholar 

  36. 36.

    J. Jin, The Finite Element Method in Electromagnetics (Wiley-IEEE, New York, 2002).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Buczynski.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buczynski, R., Kujawa, I., Kasztelanic, R. et al. Supercontinuum generation in all-solid photonic crystal fiber with low index core. Laser Phys. 22, 784–790 (2012). https://doi.org/10.1134/S1054660X12040019

Download citation

Keywords

  • Laser Phys
  • Photonic Crystal Fiber
  • SUPERCONTINUUM Generation
  • Broadband Source
  • Zero Dispersion Wavelength