Skip to main content

Multi-material Photonic Crystal Fiber in MIR Region for Broadband Supercontinuum Generation

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 472))

Abstract

In this paper, we have numerically investigated a multi-material photonic crystal fiber and simulated 1.6–4.2 µm mid-infrared supercontinuum generation. This mid-infrared broadband supercontinuum is observed for photonic crystal fiber of 100 mm length, when pumped with 85 fs laser pulses operating at 2.5 µm and peak power pulse is 350 W. The design of photonic crystal fiber with borosilicate and As2S3 glass has broad and flat dispersion profile with two zero dispersion wavelengths and high nonlinearity which helps in the generation of broadband supercontinuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barh A, Ghosh S, Agrawal GP, Varshney RK, Aggarwal ID, Pal BP (2013) Design of an efficient mid-IR light source using chalcogenide holey fibers: a numerical study. J Opt 15:035205

    Article  Google Scholar 

  2. Barh A, Ghosh S, Varshney RK, Pal BP (2013) An efficient broadband mid-wave IR fiber optic light source: design and performance simulation. Opt Express 21:9547–9555

    Article  Google Scholar 

  3. Dudley JM, Gentry G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Modern Phys 78(4):1135–1184

    Article  Google Scholar 

  4. Vyas S, Tanabe T, Tiwari M, Singh G (2016) Ultraflat broadband supercontinuum in highly nonlinear Ge11.5As24Se64.5 photonic crystal fibres. Ukr J Phys Opt 17:132–139

    Article  Google Scholar 

  5. Tamura KR, Kubota H, Nakazawa M (2000) Fundamentals of stable continuum generation at high repetition rates. IEEE J Quantum Electron 36:773–779

    Article  Google Scholar 

  6. Hult J, Watt RS, Kaminski CF (2007) High bandwidth absorption spectroscopy with a dispersed supercontinuum source. Opt Express 15:11385–11395

    Article  Google Scholar 

  7. Kaminski CF, Watt RS, Elder AD, Frank JH, Hult J (2008) Supercontinuum radiation for applications in chemical sensing and microscopy. Appl Phys B 92:367–378

    Article  Google Scholar 

  8. Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler RS (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett 26:608–610

    Article  Google Scholar 

  9. Shi K, Li P, Liu Z (2007) Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap. Appl Phys Lett 90:141116

    Article  Google Scholar 

  10. Morioka T, Kawanishi S, Mori K, Saruwatari M (1994) Transformlimited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum. Electron Lett 30:1166–1168

    Article  Google Scholar 

  11. Reichert J, Udem T, Hänsch TW, Knight JC, Wadsworth WJ, Russell PStJ (2000) Optical frequency synthesizer for precision spectroscopy. Phys Rev Lett 85:2264–2267

    Google Scholar 

  12. Russell PStJ (2006) Photonic-crystal fibers. J Lightwave Technol 24:4729–4749

    Google Scholar 

  13. Saitoh K, Koshiba M, Mortensen NA (2006) Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible. New J Phys 8:207–215

    Article  Google Scholar 

  14. Cardinal T, Richardson KA, Shim H, Schulte A, Beatty R, Le Foulgoc K, Meneghini C, Viens JF, Villeneuve A (1999) Non-linear optical properties of chalcogenide glasses in the system As-S-Se. J Non-Cryst Solids 256:353–360

    Article  Google Scholar 

  15. Zakery A, Elliott SR (2003) Optical properties and applications of chalcogenide glasses: a review. J Non-Cryst Solids 330:1–12

    Article  Google Scholar 

  16. Boudebs G, Cherukulappurath S, Guignard M, Troles J, Smektala F, Sanchez F (2004) Linear optical characterization of chalcogenide glasses. Opt Commun 230:331–336

    Article  Google Scholar 

  17. Vyas S, Tanabe T, Tiwari M, Singh G (2016) Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation. Chin Opt Lett 14:123201

    Article  Google Scholar 

  18. Gander MJ, McBride R, Jones JDC, Mogilevtsev D, Birks TA, Knight JC, Russell PStJ (1999) Experimental measurement of group velocity dispersion in photonic crystal fibre. Electron Lett 35:63–64

    Google Scholar 

  19. Ferrando A, Silvestre E, Andrés P, Miret JJ, Andrés MV (2001) Designing the properties of dispersion flattened photonic crystal fibers. Opt Express 9:687–697

    Article  Google Scholar 

  20. Reeves WH, Knight JC, Russell PStJ, Roberts PJ (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express 10:609–613

    Article  Google Scholar 

  21. Dudley JM, Taylor JR (2010) Supercontinuum generation in optical fibers. Cambridge

    Google Scholar 

  22. Heidt AM (2010) Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J Opt Soc Am B 27:550–559

    Article  Google Scholar 

  23. Maji PS, Chaudhuri PR (2015) Design of all-normal dispersion based on multi-material photonic crystal fiber in IR region for broadband supercontinuum generation. Opt Soc Am 54:4042–4048

    Google Scholar 

  24. Agarwal GP (2007) Nonlinear fiber optics, 4th edn. Academic

    Google Scholar 

  25. Vyas S, Tanabe T, Singh G, Tiwari M (2016) Broadband supercontinuum generation and Raman response in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber. In: IEEE international conference on computational techniques in information and communication technologies (ICCTICT), pp 607–611. https://doi.org/10.1109/ICCTICT.2016.7514651

  26. Salem AB, Cherif R, Zghal M (2011) Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber. Progress in electromagnetics research symposium proceedings, pp 20–23. Marrakesh, Morocco

    Google Scholar 

  27. Kärtner FX, Dougherty DJ, Haus HA, Ippen EP (1994) Raman noise and soliton squeezing. J Opt Soc Am B 11:1267–1276

    Article  Google Scholar 

  28. Vyas S, Tanabe T, Tiwari M, Singh G (2016) Mid-infrared supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber. In: IEEE international conference advances in computing, communications and informatics (ICACCI), pp 2547–2552. https://doi.org/10.1109/ICACCI.2016.7732436

  29. Yuan W (2013) 2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber. Laser Phys Lett 10:095107

    Article  Google Scholar 

  30. Wei D-P, Galstian TV, Smolnikov IV, Plotnichenko VG, Zohrabyan A (2005) Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber. Opt Express 13:2439–2443

    Article  Google Scholar 

Download references

Acknowledgments

The research work proposed in the paper is the carried out under the collaborative activity of the faculty members of Malaviya National Institute of Technology, Jaipur, and Manipal University, Jaipur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanshyam Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalra, S., Vyas, S., Tiwari, M., Singh, G. (2018). Multi-material Photonic Crystal Fiber in MIR Region for Broadband Supercontinuum Generation. In: Janyani, V., Tiwari, M., Singh, G., Minzioni, P. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 472. Springer, Singapore. https://doi.org/10.1007/978-981-10-7395-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7395-3_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7394-6

  • Online ISBN: 978-981-10-7395-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics