Skip to main content
Log in

Generation of an ultrabroadband supercontinuum in the mid-infrared region using dispersion-engineered GeAsSe photonic crystal fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An ultrabroadband mid-infrared (MIR) region supercontinuum (SC) is demonstrated numerically through dispersion-engineered traditional chalcogenide (ChG) photonic crystal fiber (PCF). By varying structural parameters pitch (hole to hole spacing) and air-hole diameter to pitch ratio, a number of 10-mm-long hexagonal PCFs made employing GeAsSe ChG glass as a core and air-holes of hexagonal lattice running through their lengths as a cladding are optimized to predict an efficient mid-infrared region SC spectral emission by pumping them using a tunable pump source between 2.9 and 3.3 µm. Simulations are carried out using an ultrashort pump pulse of 100-fs duration with a low pulse peak powers of between 3 and 4 kW into the optimized designs. It is found through numerical analysis that efficient SC spectral broadening with flattened output can be obtained by increasing the PCF pitch rather than increasing the PCF cladding containing air-hole diameter although a larger nonlinear coefficient could be obtained through increasing air-hole diameter of an optimized design. Simulation results show that the SC spectra can be broadened up to 12.2 µm for a certain design with a peak power of 3 kW. Using a peak power of 4 kW, it is possible to obtain SC spectral broadening beyond 14 µm with an optimized design spanning the wavelength range from 1.8 to 14 µm which covers the electromagnetic spectrum required for MIR molecular fingerprint region applications such as sensing and biological imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic, San Diego (2013)

    MATH  Google Scholar 

  • Aggarwal, I.D., Sanghera, J.S.: Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002)

    Google Scholar 

  • Al-Kadry, A., Amraoui, M.E., Messaddeq, Y., Rochette, M.: Two octaves mid-infrared supercontinuum generation in As2 Se3 microwires. Opt. Exp. 22(25), 31131–31137 (2014)

    Article  ADS  Google Scholar 

  • Al-Kadry, A., Li, L., Amraoui, M.E., North, T., Messaddeq, Y., Rochette, M.: Broadband supercontinuum generation in all-normal dispersion chalcogenide nanowires. Opt. Lett. 40(20), 4687–4690 (2015)

    Article  ADS  Google Scholar 

  • Biancalana, F., Skryabin, D.V., Yulin, V.: Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers. Phys. Rev. E 70, 016615 (2004)

    Article  ADS  Google Scholar 

  • Brilland, L., Smektala, F., Renversez, G., Chartier, T., Troles, J., Nguyen, T.N., Traynor, N., Monteville, A.: Fabrication of complex structures of Holey Fibers in chalcogenide glasses. Opt. Express 14, 1280–1285 (2006)

    Article  ADS  Google Scholar 

  • Cheng, T., Zhang, L., Xue, X., Deng, D., Suzuki, T., Ohishi, Y.: Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm. Opt. Express 23, 4125–4134 (2015)

    Article  ADS  Google Scholar 

  • Cheng, T., Nagasak, K., Tuan, T.H., Xue, X., Matsumoto, M., Tezuka, H., Suzuki, T., Ohishi, Y.: Mid-infrared supercontinuum generation spanning 2 to 15.1 µm in a chalcogenide step-index fiber. Opt. Lett. 41, 2117–2120 (2016)

    Article  ADS  Google Scholar 

  • Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 5433, 1537–1539 (1999)

    Article  Google Scholar 

  • Domachuk, P., Wolchover, N.A., Cronin-Golomb, M., Wang, A., George, A.K., Cordeiro, C.M.B., Knight, J.C., Omenetto, F.G.: Over 4000 nm bandwidth of Mid-IR supercontinuum generation in subcentimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Coen, S.: Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27, 1180–1182 (2002)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Taylor, J.R.: Ten years of nonlinear optics in photonic crystal fiber. Nat. Photonics 3, 85–90 (2009)

    Article  ADS  Google Scholar 

  • Dupont, S., Petersen, C., Thøgersen, J., Agger, C., Bang, O., Keiding, S.R.: IR microscopy utilizing intense supercontinuum light source. Opt. Express 20, 4887–4892 (2012)

    Article  ADS  Google Scholar 

  • Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)

    Article  ADS  Google Scholar 

  • Fatome, J., Fortier, C., Nguyen, T.N., Chartier, T., Smektala, F., Messaad, K., Kibler, B., Pitois, S., Gadret, G., Finot, C., Troles, J., Desevedavy, F., Houizot, P., Renversez, G., Brilland, L., Traynor, N.: Linear and nonlinear characterizations of chalcogenide photonic crystal fibers. J. Lightwave Technol. 27(11), 1707–1715 (2009)

    Article  ADS  Google Scholar 

  • Finot, C., Kibler, B., Provost, L., Wabnitz, S.: Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25(11), 1938–1948 (2008)

    Article  ADS  Google Scholar 

  • Gai, X., Han, T., Prasad, A., Madden, S., Choi, D.Y., Wang, R., Bulla, D., LutherDavies, B.: Progress in optical waveguides fabricated from chalcogenide glasses. Opt. Exp. 18(25), 26635–26646 (2010)

    Article  ADS  Google Scholar 

  • Gao, W., Amraoui, M.E., Liao, M., Kawashima, H., Duan, Z., Deng, D., Cheng, T., Suzuki, T., Messaddeq, Y., Ohishi, Y.: Mid-infrared supecontinuum generation in asuspended-core As2 S3 chalcogenide microstructured optical fiber. Opt. Express 21, 9573–9583 (2013)

    Article  ADS  Google Scholar 

  • Guo, Z., Yuan, J., Yu, C., Sang, X., Wang, K., Yan, B., Li, L., Kang, S., Kang, X.: Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber. Prog. Electromagn. Res. 48, 67–76 (2016)

    Article  Google Scholar 

  • Guo, H., Herkommer, C., Billat, A., Grassani, D., Zhang, C., Pfeiffer, M.H.P., Weng, W., Bres, C.-S., Kippenberg, T.-J.: Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photon. 12, 330–335 (2018)

    Article  ADS  Google Scholar 

  • Habib, M.S., Markos, C., Bang, O., Bache, M.: Soliton-plasma nonlinear dynamicsin mid-IR gas-filled hollow-core fibers. Opt. Lett. 42, 2232–2235 (2017)

    Article  ADS  Google Scholar 

  • Hartung, A., Heidt, A.M., Bartelt, H.: Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Opt. Express 19(8), 7742–7749 (2011)

    Article  ADS  Google Scholar 

  • Heidt, A.M.: Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J. Opt. Soc. Am. B 27(3), 550–559 (2010)

    Article  ADS  Google Scholar 

  • Heidt, A.M., Hartung, A., Bosman, G.W., Krok, P., Rohwer, E.G., Schwoerer, H., Bartelt, H.: Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express 19(4), 3775–3778 (2011)

    Article  ADS  Google Scholar 

  • Hooper, L.E., Mosley, P.J., Muir, A.C., Wadsworth, W.J., Knight, J.C.: Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19(6), 4902–4907 (2011)

    Article  ADS  Google Scholar 

  • Hu, J., Menyuk, C.R., Shaw, L.B., Sanghera, J.S., Aggarwal, I.D.: Maximizing the bandwidth of supercontinuum generation in As2 Se3 chalcogenide fibers. Opt. Exp. 18(3), 6722–6739 (2010)

    Article  ADS  Google Scholar 

  • Hudson, D.D., Mägi, E.C., Judge, A.C., Dekker, S.A., Eggleton, B.J.: Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation. Opt. Commun. 285, 4660–4669 (2012)

    Article  ADS  Google Scholar 

  • Hudson, D.D., Antipov, S., Li, L., Alamgir, I., Hu, T., El-Amraoui, M., Messaddeq, Y., Rochette, M., Jackson, S.D., Fuerbach, A.: Toward all-fiber supercontinuum spanning the mid-infrared. Optica 4, 1163–1166 (2017)

    Article  Google Scholar 

  • Karim, M.R., Rahman, B.M.A., Agrawal, G.P.: Dispersion engineered Ge11.5 As24 Se64.5 nanowire for supercontinuum generation: a parametric study. Opt. Exp. 22(25), 31029–31040 (2014)

    Article  ADS  Google Scholar 

  • Karim, M.R., Rahman, B.M.A., Azabi, Y.O., Agrawal, A., Agrawal, G.P.: Ultra-broadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers. J. Opt. Soc. Am. B 32, 2343–2351 (2015)

    Article  ADS  Google Scholar 

  • Karim, M.R., Ahmad, H., Rahman, B.M.A.: Design and modeling of dispersion engineered all-chalcogenide triangular-core fiber for mid-infrared-region supercontinuum generation. J. Opt. Soc. Am. B 35, 266–275 (2018)

    Article  ADS  Google Scholar 

  • Knight, J.C., Russell, P.S.J.: Photonic crystal fibers: new ways to guide light. Science 296, 276–277 (2002)

    Article  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.S., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  • Kubat, I., Agger, C.S., Møller, U., Seddon, A.B., Tang, Z., Sujecki, S., Benson, T.M., Furniss, D., Lamarini, S., Scholle, K., Fuhrberg, P., Napier, B., Farries, M., Ward, J., Moselund, P.M., Bang, O.: Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibers pumped at 4.5 µm. Opt. Express 22, 19169–19182 (2014)

    Article  ADS  Google Scholar 

  • Kubat, I., Bang, O.: Multimode supercontinuum generation in chalcogenide glass fibres. Opt. Express 24, 2513–2526 (2016)

    Article  ADS  Google Scholar 

  • Kuyken, B., Ideguchi, T., Holzner, S., Yan, M., Hansch, T.W., Campenhout, J.V., Verheyen, P., Coen, S., Leo, F., Baets, R., Roelkens, G., Picque, N.: An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015)

    Article  Google Scholar 

  • Liao, M., Qin, G., Yan, X., Suzuki, T., Ohishi, Y.: A Tellurite nanowire with long suspended struts for low-threshold single-mode supercontinuum generation. J. Lightwave Technol. 29, 194–199 (2011)

    Article  ADS  Google Scholar 

  • Liu, L., Cheng, T., Nagasaka, K., Tong, H., Qin, G., Suzuki, T., Ohishi, Y.: Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion. Opt. Lett. 41, 392–395 (2016)

    Article  ADS  Google Scholar 

  • Magi, E.C., Fu, L.B., Nguyen, H.C., Lamont, M.R.E., Yeom, D.I., Eggleton, B.J.: Enhanced Kerr nonlinearity in sub-wavelength diameter As2 Se3 chalcogenide fiber tapers. Opt. Express 15, 10324–10329 (2007)

    Article  ADS  Google Scholar 

  • Ma, P., Choi, D.Y., Yu, Y., Gai, X., Yang, Z., Debbarma, S., Madden, S., LutherDavies, B.: Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt. Exp. 21(24), 29927–29937 (2013)

    Article  ADS  Google Scholar 

  • Markos, C., Bang, O.: Nonlinear label-free biosensing with high sensitivity using As2 S3 chalcogenide tapered fiber. J. Lightwave Technol. 33(13), 2892–2898 (2015)

    Article  ADS  Google Scholar 

  • Markos, C., Travers, J.C., Abdolvand, A., Eggleton, B.J., Bang, O.: Hybrid photoniccrystal fiber. Rev. Mod. Phys. 89(4), 045003 (2017)

    Article  ADS  Google Scholar 

  • Møller, U., Yu, Y., Kubat, I., Petersen, C.R., Gai, G., Brilland, L., Mechin, D., Caillaud, C., Troles, J., Luther-Davies, B., Bang, O.: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Exp. 23(3), 3282–3291 (2015)

    Article  ADS  Google Scholar 

  • Ou, H., Dai, S., Zhang, P., Liu, Z., Wang, X., Chen, F., Xu, H., Luo, B., Huang, Y., Wang, R.: Ultrabroad supercontinuum generated from a highly nonlinear GeSbSe fiber. Opt. Lett. 41, 3201–3504 (2016)

    Article  ADS  Google Scholar 

  • Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, M., Tang, Z., Furniss, D., Seddon, A., Bang, O.: Midinfrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultrahigh NA ChG step-index fiber. Nat. Photonics 8, 830–834 (2014)

    Article  ADS  Google Scholar 

  • Petersen, C.R., Prtljaga, N., Farries, M., Ward, J., Napier, B., Lloyd, G.R., Nallala, J., Stone, N., Bang, O.: Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett. 43, 999–1002 (2018)

    Article  ADS  Google Scholar 

  • Petersen, C.R., Engelsholm, R.D., Markos, C., Brilland, L., Caillaud, C., Troles, J., Bang, O.: Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Opt. Express 25, 15336–15348 (2017)

    Article  ADS  Google Scholar 

  • Qin, G., Yan, X., Kito, C., Liao, M., Chaudhari, C., Suzuki, T., Ohishi, Y.: Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber. Appl. Phys. Lett. 95(16), 161103 (2009)

    Article  ADS  Google Scholar 

  • Rahman, B.M.A., Davies, J.B.: Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2, 682–688 (1984)

    Article  ADS  Google Scholar 

  • Saini, T.S., Kumar, A., Sinha, R.K.: Broadband mid-infrared supercontinuum spectra spanning 2–15 µm using As2 Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber. J. Lightw. Technol. 33, 3914–3920 (2015)

    Article  ADS  Google Scholar 

  • Sanghera, J., Florea, C., Shaw, L., Pureza, P., Nguyen, V., Bashkansky, M., Dutton, Z., Aggarwal, I.D.: Non-linear properties of chalcogenide glasses and fibers. J. Non-Cryst. Solids 354, 462–467 (2008)

    Article  ADS  Google Scholar 

  • Schliesser, A., Picque, N., Haensch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6, 440–449 (2012)

    Article  ADS  Google Scholar 

  • Seddon, A.B., Napier, B., Lindsay, I., Lamrini, S., Moselund, P.M., Stone, N., Bang, O.: Mid-infrared spectroscopy/bioimaging: moving toward MIR optical biopsy. Laser Focus World 52(2), 50–53 (2016)

    Google Scholar 

  • Shaw, L.B., Gattass, R.R., Sanghera, J.S., and Aggarwal, I D.: All-fiber mid-IR supercontinuum source from 1.5 to 5 µm. In: Proceedings of the SPIE 7914 (2011)

  • Siwicki, B., Klimczak, M., Stepien, R., Buczynski, R.: Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550 nm. Opt. Fiber Tech. 25, 64–71 (2015)

    Article  ADS  Google Scholar 

  • Stepniewski, G., Klimczak, M., Bookey, H., Siwicki, B., Pysz, D., Stepien, R., Kar, A.K., Waddie, A.J., Taghizadeh, M.R., Buczynski, R.: Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm. Laser Phys. Lett. 11, 055103 (2014)

    Article  ADS  Google Scholar 

  • Swiderski, J., Michalska, M.: High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared. Opt. Lett. 39, 910–913 (2014)

    Article  ADS  Google Scholar 

  • Tajima, K., Zhou, J., Nakajima, K., Sato, K.: Ultra low loss and long length photonic crystal fiber. J. Lightwave Technol. 22(1), 7–10 (2004)

    Article  ADS  Google Scholar 

  • Tang, Y., Wright, L.G., Charan, K., Wang, T., Xu, C., Wise, F.W.: Generation of intense 100-fs solitons tunable from 2 to 4.3 µm in fluoride fiber. Optica 3, 948–951 (2016)

    Article  Google Scholar 

  • Toupin, P., Brilland, L., Troles, J., Adam, J.-L.: Small core Ge–As–Se microstructured optical fiber with single-mode propagation and low optical losses. Opt. Mater. Express 2, 1359–1366 (2012)

    Article  ADS  Google Scholar 

  • Wang, T., Gai, X., Wei, W., Wang, R., Yang, Z., Shen, X., Madden, S., Luther-Davies, B.: Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses. Opt. Mater. Express 4, 1011–1022 (2014)

    Article  ADS  Google Scholar 

  • Wei, C., Zhu, X., Norwood, R.A., Seng, F., Peyghambarian, N.: Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm. Opt. Exp. 21(24), 29488–29504 (2013)

    Article  ADS  Google Scholar 

  • Xing, S., Grassani, D., Kharitonov, S., Billat, A., Bres, C.-S.: Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion. Opt. Express 24, 9741–9750 (2016)

    Article  ADS  Google Scholar 

  • Xing, S., Grassani, D., Kharitonov, S., Brilland, L., Caillaud, C., Troles, J., Bres, C.S.: Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers. Optica 4, 643–648 (2017)

    Article  Google Scholar 

  • Yu, Y., Gai, X., Zhai, C., Qi, S., Guo, W., Yang, Z., Wang, R., Choi, D., Madden, S., Luther-Davies, B.: 1.8–10 µm mid-infrared supercontinuum generation in a step-index chalcogenide fiber using low peak pump power. Opt. Lett. 40(6), 1081–1084 (2015)

    Article  ADS  Google Scholar 

  • Zhao, Z., Wu, X., Wang, W., Pa, Z., Liu, Z., Zhang, P., Shen, X., Nie, Q., Dai, S., Wang, R.: Mid-infrared supercontinuum covering 2–16 µm in a low-loss telluride singlemode fiber. Laser Photonics Rev. 2, 1700005 (2017)

    Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the Ministry of Higher Education (MOHE) under the Grants GA 010-2014 (ULUNG) and the University of Malaya under the Grants RP029B-15 AFR and RU001-2017. We would also like to thank the City, University of London for providing support for this work under the Newton Fund Grant IF026-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H., Karim, M.R., Ghosh, S. et al. Generation of an ultrabroadband supercontinuum in the mid-infrared region using dispersion-engineered GeAsSe photonic crystal fiber. Opt Quant Electron 50, 405 (2018). https://doi.org/10.1007/s11082-018-1674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1674-y

Keywords

Navigation