Skip to main content
Log in

Effect of Pressure on Elastic Constants and Related Properties of Rare-Earth Intermetallic Compound TbNiAl

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The Lennard-Jones potential approach is used to investigate the effect of pressure on the ultrasonic and elastic properties of the rare-earth ternary TbNiAl intermetallic compound. The second- and third-order elastic constants of TbNiAl are considered using the potential model. The pressure-dependent higher-order elastic constants are studied, and it is observed that the elastic constants of the TbNiAl compound increased monotonously with pressure. The hexagonal TbNiAl compound is mechanically stable up to the pressure 20 GPa according to the Born elastic stability criteria. The Voigt–Reuss–Hill approach is used to compute such elastic parameters as Young’s modulus, bulk modulus, Poisson’s ratio, and shear modulus in the pressure range 0–45 GPa. Hardness, melting temperature, and anisotropy are also determined for the intermetallic TbNiAl compound. The pressure-dependent velocities and attenuation of ultrasonic waves in this ternary compound are evaluated. The computation results are also satisfactory in estimating the Debye temperature and thermal conductivity Kmin under different pressure. It is observed that TbNiAl has a significant anisotropy at zero pressure, which becomes stronger as the pressure increased. This ternary compound behaves as its purest form at higher pressure and is more ductile, which is demonstrated by the minimum attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Cable, J.W., Koehlar, W.C., and Wollan, E.O., Magnetic Order in Rare-Earth Intermetallic Compound, Phys. Rev., 1964, vol. 136, pp. 240–242. https://doi.org/10.1103/PhysRev.136.A240

    Article  ADS  Google Scholar 

  2. Javorsky, P., Burlet, P., Shekovsky, P., Arons, R.R., Ressouche, E., and Lapertot, G., Neutron Diffraction Study of Magnetic Ordering in RNiAl Compounds, Phys. B. Condens. Matter, 1997, vol. 234, pp. 665–666. https://doi.org/10.1016/S0921-4526(96)01080-0

    Article  ADS  Google Scholar 

  3. Kitazawa, H., Donni, A., Keller, L., Tang, J., Fauth, F., and Kido, G., Magnetic Structures of the Rare-Earth Platinum Aluminides RPtAl (R = Ce, Pr, Nd), J. Solid Chem., 1998, vol. 140, pp. 233–241. https://doi.org/10.1006/jssc.1998.7881

  4. Soderberg, O., Brown, D., Aaltio, I., Oksanen, J., Syren, J., Pulkkinen, H., Hannula, S.P., Microstructure and Properties of Ni–Mn–Ga Alloys Produced by Rapid Solidification and Pulsed Electric Current Sintering, J. Alloys Compnd, 2011, vol. 509, pp. 5981–5987. https://doi.org/10.1016/j.jallcom.2011.02.16

    Article  Google Scholar 

  5. Klicpera, M., Javorský, P., and Puente Orench, I., Development of Magnetic Order in the TbNi(Al, In) Series and Magnetocrystalline Anisotropy in TbTX Compounds, Phys. Rev. B, 2011, vol. 84, pp. 224414–8. https://doi.org/10.1103/PhysRevB.84.224414

    Article  ADS  Google Scholar 

  6. Javorsky, P., Prchal, J., Klicpera, M., Kastil, J., and Misek, M., Pressure Influence on Magnetic Properties of TbNiAl, Acta Phys. Polon. A, 2014, vol. 126, pp. 280–281. https://doi.org/10.12693/APhysPolA.126.280

    Article  ADS  Google Scholar 

  7. Mao, H.K., Bell, P.M., Shaner, J.W., and Steinberg, D.J., Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Ruby R1 Fluorescence Pressure Gauge from 0.06 to 1 Mbar, J. Appl. Phys., 1978, vol. 49, pp. 3276–3282. https://doi.org/10.1063/1.325277

    Article  ADS  Google Scholar 

  8. Ishii, Y., Kosaka, M., Uwatoko, Y., Andreev, A.V., and Sechovský, V., Ferromagnetism Induced in UCoAl under Uniaxial Pressure, Phys. B. Condens. Matter, 2003, vol. 334, pp. 160–166. https://doi.org/10.1016/S0921-4526(03)00041-3

    Article  ADS  Google Scholar 

  9. Prchal, J., Javorsky, P., Rusz, J., de Boer, F., Divis, M., Kitazawa, H., Donni, A., Danis, S., and Sechovsky, V., Structural Discontinuity in the Hexagonal RtAl Compounds: Experiments and Density-Functional Theory Calculations, Phys. Rev. B, 2008, vol. 77, p. 134106. https://doi.org/10.1103/PhysRevB.77.134106

    Article  ADS  Google Scholar 

  10. Prchal, J., Klicpera, M., Dolezal, P., Kastil, J., Misek, M., and Javorsky, P., Pressure Effect on the Isostructural Transition in RNiAl Compounds (R = Tb and Gd), J. Phys. Conf. Ser., 2014, vol. 500, p. 032013. https://doi.org/10.1088/1742-6596/500/3/032013

    Article  Google Scholar 

  11. Jha, A.R., Applications of Rare Earth Intermetallic Compounds, Hydrides, and Ceramics, New York: Taylor & Francis Group, 2014.

  12. Singh, N.K., Suresh, K.G., Nirmala, R., Nigam, A.K., Malik, S.K., Magnetic and Magnetocaloric Properties of the Intermetallic Compound TbNiAl, J. Magnetism Magnetic Mater., 2006, vol. 302(2), pp. 302–305. https://doi.org/10.1016/j.jmmm.2005.09.023

    Article  ADS  Google Scholar 

  13. Jaiswal, A.K., Yadawa, P.K., and Yadav, R.R., Ultrasonic Wave Propagation in Ternary Intermetallic CeCuGe Compound, Ultrasonics, 2018, vol. 89, pp. 22–25. https://doi.org/10.1016/j.ultras.2018.04.009

    Article  Google Scholar 

  14. Panday, D.K., Yadawa, P.K., and Yadav, R.R., Ultrasonic Properties of Hexagonal ZnS at Nanoscale, Mater. Lett. 2007, vol. 61, pp. 5194–5198. https://doi.org/10.1016/j.matlet.2007.04.028

  15. Yadawa, P.K., Singh, D., Panday, D.K., and Yadav, R.R., Elastic and Acoustic Properties of Heavy Rare-Earth Metals, Open Acoustics J., 2009, vol. 2, pp. 61–67. https://doi.org/

    Article  ADS  Google Scholar 

  16. Donald, T.M. and Glen, A.S., High Lattice Thermal Conductivity Solids in High Thermal Conductivity of Materials, Springer, 2006, pp. 37–43.

  17. Voigt, W., Lehrbuch der Kristallphysik (Mitausschluss der Kristalloptik), Leipzig–Berlin: B.G. Teubner, 1928.

  18. Reuss, A., Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, ZAMM–J. Appl. Math. Mech., 1929, vol. 9, p. 49. http://dx.doi.org/10.1002/zamm.19290090104

    Article  Google Scholar 

  19. Hill, R., The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A, 1952, vol. 65, pp. 349–354. https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  20. Turkdal, N., Deligoz, E., Ozisik, H., and Ozisik, H.V., First-Principles Studies of the Structural, Elastic, and Lattice Dynamical Properties of ZrMo2 and HfMo2, Phase Transit., 2017, vol. 90, pp. 1–12. https://doi.org/10.1080/01411594.2016.1252979

    Article  Google Scholar 

  21. Weck, P.F., Kim, E., Tikare, V., and Mitchell, J.F., Mechanical Properties of Zirconium Alloys and Zirconium Hydrides Predicted from Density Functional Perturbation Theory, Dalton Trans., 2015, vol. 44, pp. 18769–18779. https://doi.org/10.1039/C5DT03403E

    Article  Google Scholar 

  22. Yadav, N., Singh, S.P., Maddheshiya, A.K., Yadawa, P.K., and Yadav, R.R., Mechanical and Thermophysical Properties of High-Temperature IrxRe1–x Alloys, Phase Transit., 2020, vol. 93, pp. 883–894. https://doi.org/10.1080/01411554.20201813290

    Article  Google Scholar 

  23. Singh, D., Panday, D.K., Yadawa, P.K., and Yadav, A.K., Attenuation of Ultrasonic Waves in V, Nb and Ta at Low Temperatures, Cryogen, 2009, vol. 49. pp. 12–16. https://doi.org/10.1016/j.cryogenics.2008.08.008

    Article  ADS  Google Scholar 

  24. Yadawa, P.K., Computational Study of Ultrasonic Parameters of Hexagonal Close-Packed Transition Metals Fe, Co, and Ni, Arab. J. Sci. Eng., 2012, vol. 37, pp. 255–262. https://doi.org/10.1007/s13369-011-0153-6

    Article  Google Scholar 

  25. Pillai, S.O., Solid State Physics: Crystal Physics, New Age International Publisher, 2005, pp. 100–102.

  26. Fine, M.E., Brown, L.D., and Marcus, H.L., Elastic Constants Versus Melting Temperature in Metals, Scripta Metallurg., 1984, vol. 18, pp. 951–956. https://doi.org/10.1016/0036-9748(84)90267-9

    Article  Google Scholar 

  27. Panday, D.K. and Panday, S., Ultrasonics: A Technique of Material Characterization, Sciyo Croatia: Sciyo Publisher, 2010, pp. 397–430.

  28. Yadawa, P.K., Elastic and Acoustic Properties of Hexagonal Intermetallic Ternary Compound, J. Pure Appl. Ultrasonics, 2018, vol. 40, pp. 16–21.

    Google Scholar 

  29. Rai, S., Chaurasiya, N., and Yadawa, P.K., Elastic, Mechanical and Thermophysical Properties of Single-Phase Quaternary ScTiZrHf High-Entropy Alloy, Phys. Chem. Solid State, 2021, vol. 22, pp. 687–696. https://doi.org/10.15330/pcss.22.4.687-696

    Article  Google Scholar 

  30. Havela, L., Divis, M., Sechovsky, V., Andreev, A.V., Honda, F., Oomi, G., Meresse, F., and Heathman, S., U Ternaries with ZrNiAl Structure–Lattice Properties, J. Alloys Compnd, 2001, vol. 322, pp. 7–13. https://doi.org/10.1016/S0925-8388(01)01176-8

    Article  Google Scholar 

  31. Zhang, G., Zhao, Y.X., Hao, Y.J., and Zhang, L., Structural, Elastic, Electronic and Thermodynamic Properties of ZrB2 under High-Pressure: First-Principle Study, World Sci., 2018, vol. 32, pp. 1–15. https://doi.org/10.1142/S0217979218502004

    Article  ADS  Google Scholar 

  32. Suetin, T.V. and Shien, I.R., Electronic and Mechanical Properties, Phase Stability, and Formation Energies of Point Defects of Niobium Boronitride Nb2BN, Phys. Solid State, 2017, vol. 59, pp. 1459–1469. https://doi.org/10.1134/S1063783417080285

    Article  Google Scholar 

  33. Guechi, A., Merabet, A., Chegaar, M., Bouhemadou, A., and Guechi, N., Pressure Effect on the Structural, Elastic, Electronic and Optical Properties of the Zintl Phase KAsSn, First Principles Study, J. Alloys Compnd, 2015, vol. 623, pp. 219–228. https://doi.org/10.1016/j.jallcom.2014.10.114

    Article  Google Scholar 

  34. Ranganathan, S.I. and Ostoja-Starzewski, M., Universal Elastic Anisotropy Index, Phys. Rev. Lett., 2008, vol. 101, pp. 1–4. https://doi.org/10.1103/PhysRevLett.101.055504

    Article  Google Scholar 

  35. Panda, K.B. and Ravi Chandran, K.S., Determination of Elastic Constants of Titanium Diboride (TiB2) from First Principles Using FLAPW Implementation of the Density Functional Theory, Comput. Mater. Sci., 2006, vol. 35, pp. 134–150. https://doi.org/10.1103/PhysRevLett.101.055504

    Article  Google Scholar 

  36. Yadawa, P.K., Ultrasonic Characterization of Ceramic Material Titanium Diboride, Ceramics-Silikaty, 2011, vol. 55, pp. 127–133.

    Google Scholar 

  37. Singh, S.P., Singh, G., Verma, A.K., Yadawa, P.K., and Yadav, R.R., Ultrasonic Wave Propagation in Thermoelectric ZrX2 (X = S, Se) Compounds, Pramana. J. Phys., 2019, vol. 93, pp. 1–9. https://doi.org/10.1007/s12043-019-1846-8

    Article  ADS  Google Scholar 

  38. Yadawa, P.K., Behaviour of Ultrasonic Velocities and Elastic Constants in Ag-Zn Alloys, Adv. Mater. Lett., 2011, vol. 2, pp. 157–162. https://doi.org/

    Article  Google Scholar 

  39. Yadawa, P.K., Effect of Temperature Dependence Ultrasonic Velocities and Attenuation of GaP Nanowires, J. Theor. Appl. Phys., 2016, vol. 10, pp. 1–7. https://doi.org/10.1007/s40094-016-0216-x

    Article  Google Scholar 

Download references

Funding

The work was performed within the Veer Bahadur Singh Purvanchal University Grant (133/VBSPU/ IQAC/2022, date 23-03-2022, code 50) and the R&D Grant of the Uttar Pradesh Department of Higher Education as well as with financial support from the Council for Scientific and Industrial Research and University Grants Commission of India (Junior Research Fellowship 1500/CSIR-UGC NET, December 2017), India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Rai or P. K. Yadawa.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S., Prajapati, A.K. & Yadawa, P.K. Effect of Pressure on Elastic Constants and Related Properties of Rare-Earth Intermetallic Compound TbNiAl. Phys Mesomech 26, 495–504 (2023). https://doi.org/10.1134/S1029959923050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923050028

Keywords:

Navigation