Skip to main content
Log in

Computational Study of Ultrasonic Parameters of Hexagonal Close-Packed Transition Metals Fe, Co, and Ni

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The ultrasonic properties like ultrasonic attenuation, sound velocity in the hexagonal closed packed (hcp) Fe, Co and Ni have been studied along unique axis at room temperature. The second- and third order elastic constants have been calculated for these metals using Lennard-Jones potential. The velocities VL and VS1 have minima and maxima respectively, with 45° with the unique axis of the crystal, while VS2 increases with the angle from unique axis. The inconsistent behavior of angle dependent velocities is associated to the action of second order elastic constants. Debye average sound velocities of these metals are increasing with the angle and has maximum at 55° with unique axis at room temperature. Hence when a sound wave travels at 55° with unique axis of these metals, then the average sound velocity is found to be maximum. The comparison of calculated ultrasonic parameters with available theoretical/experimental physical parameters gives information about classification of these metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinle-Neumann G., Stixrude L., Cohen R.E.: Erratum: First-principles elastic constants for hcp transition metals Fe, Co and Re at high pressure. Phys. Rev. B 69, 219903(E) (2004)

    Article  Google Scholar 

  2. Asker C., Vitos L., Abrikkosov I.: Elastic constants and anisotropy in FeNi alloys at high pressures from first-principles calculations. Phys. Rev. B 79, 214112 (2009)

    Article  Google Scholar 

  3. Steinle-Neumann G., Stixrude L., Cohen R.E.: First-principles elastic constants for hcp transition metals Fe, Co and Re at high pressure. Phys. Rev. B 60, 791 (1999)

    Article  Google Scholar 

  4. Bancroft D., Peterson E.L., Minshall S.: Polymorphism of iron at high pressure. J. Appl. Phys. 27, 291–298 (1956)

    Article  Google Scholar 

  5. Nicol M., Jura G.: Mössbauer spectrum of iron-57 in iron metal at very high pressures. Science 14, 1035–1042 (1963)

    Article  Google Scholar 

  6. Mao H.K., Wu Y., Chen L.C., Shu J.F., Jephcoat A.P.: Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: implications for composition of the core. J. Geophys. Res. 95, 21737 (1990)

    Article  Google Scholar 

  7. Antonangeli D., Krisch M., Fiquet G., Badro J., Farber D.L., Bossak A., Merkel S.: Aggregate and single-crystalline elasticity of hcp cobalt at high pressure. Phys. Rev. B 72, 134303 (2005)

    Article  Google Scholar 

  8. Yuanzhu M., Dingsheng Y., Yingliang L., Jingxian Z., Yong X.: Synthesis of hexagonal close-packed nanocrystalline nickel by a thermal reduction process. Mater. Chem. Phys. 89(2–3), 359–370 (2005)

    Google Scholar 

  9. Soderlind P., Moriarty J.A., Wills J.M.: First-principles theory of iron up to earth-core pressures: structural, vibrational and elastic properties. Phys. Rev. B 53, 14063 (1996)

    Article  Google Scholar 

  10. Cohen R.E., Stixrude L., Wasserman E.: Tight-binding computations of elastic anisotropy of Fe, Xe and Si under compression. Phys. Rev. B 56, 8575 (1997)

    Article  Google Scholar 

  11. Schober H.R., Dederi H.: Elastic Piezoelectric Pyroelectric Piezooptic Electrooptic Constants and Nonlinear Dielectric Susceptibilities of Crystals, New Series III, vol. 11a. Springer, Berlin (1979)

    Google Scholar 

  12. Guo G.Y., Wang H.H.: Gradient-corrected density functional calculation of elastic constants of Fe, Co and Ni in bcc, fcc and hcp structures. Chin. J. Phys. 38, 949–961 (2000)

    Google Scholar 

  13. Schroter M., Ebert H., Akai H., Entel P., Hoffmann E., Reddy G.G.: First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition metals alloys. Phys. Rev. B 52, 188 (1995)

    Article  Google Scholar 

  14. James P., Eriksson O., Johansoon B., Abrikosov I.A.: Calculated magnetic properties of binary alloys between Fe, Co, Ni of Cu. Phys. Rev. B 59, 419 (1999)

    Article  Google Scholar 

  15. Pileni M.-P.: Magnetic fluids: fabrication, magnetic properties and organization of nanoparticles. Adv. Funct. Mater. 11, 323–335 (2001)

    Article  Google Scholar 

  16. Gambardella P., Rusponi S., Veronese M., Dhesi S.S., Grazioli C., Dallmeyer A., Cabria I., Zeller R., Dederichs P.H., Kern K.: Gaint magnetic anisotropy of single cobalt atom and nanoparticles. Science 300, 1130–1133 (2003)

    Article  Google Scholar 

  17. Yadawa P.K., Singh D., Pandey D.K., Yadav R.R.: Elastic and acoustic properties of heavy rare-earth metals. Open Acoust. J. 2, 61–67 (2009)

    Article  Google Scholar 

  18. Singh D., Yadawa P.K.: Effect of platinum addition to coinage metals on their ultrasonic properties. Platinum Metals Rev. 54(3), 172–179 (2010)

    Article  Google Scholar 

  19. Ravindran P., Fast L., Korzhavyi P.A., Johansson B., Wills J.M., Eriksson O.: Theory for calculating elastic properties of orthorhombic crystal from first principles: application to TiSi2. J. Appl. Phys. 84, 4891–4904 (1998)

    Article  Google Scholar 

  20. Hong-Zhi F., D-Hua L., Feng P., Tao G., Xin-Lu C.: Theoretical calculations for structural, elastic and thermodynamic properties of TiAl under high pressure. Commun. Theor. Phys. 50, 1427–1434 (2008)

    Article  Google Scholar 

  21. Yadav A.K., Yadav R.R., Pandey D.K., Singh D.: Ultrasonic study of fission products precipated in the nuclear fuel. Mater. Lett. 62, 3258–3261 (2008)

    Article  Google Scholar 

  22. Pandey D.K., Yadawa P.K., Yadav R.R.: Ultrasonic properties of hexagonal ZnS at nanoscale. Mater. Lett. 61, 5194–5198 (2007)

    Article  Google Scholar 

  23. Pandey D.K., Yadawa P.K., Yadav R.R.: Acoustic wave propagation in Laves-phase compounds. Mater. Lett. 61, 4747–4751 (2007)

    Article  Google Scholar 

  24. Pandey D.K., Singh D., Yadawa P.K.: Ultrasonic study of osmium and ruthenium. Platinum Met. Rev. 53, 91–97 (2009)

    Article  Google Scholar 

  25. Yadawa P.K., Pandey D.K., Singh D., Yadav R.R., Mishra G.: Computations of ultrasonic parameters of lanthanide metals. Turk. J. Phys. 34, 23–31 (2010)

    Google Scholar 

  26. Pandey D.K., Singh D., Yadav R.R.: Ultrasonic wave propagation in IIIrd group nitrides. Appl. Acoust. 68, 766–777 (2007)

    Article  Google Scholar 

  27. Landolt H., Bornstein R.: Numerical Data and Function Relationship in Science and Technology, Group III, vol. 11. Springer, Berlin (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Yadawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadawa, P.K. Computational Study of Ultrasonic Parameters of Hexagonal Close-Packed Transition Metals Fe, Co, and Ni. Arab J Sci Eng 37, 255–262 (2012). https://doi.org/10.1007/s13369-011-0153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0153-6

Keywords

Navigation