Skip to main content
Log in

Mechanical Characterization of Additively Manufactured Orthopedic Cellular Implants: Case Study on Different Cell Types and Effect of Defects

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

A porous structure is widely used in additive manufacturing of orthopedic implants to reduce the stiffness mismatch between the implant and the bone. The development and improvement of porous structures for orthopedic implants is still a major challenge. It is essential to study mechanical properties of different porous structures and their relation to the deformation mechanism. In this paper, the relation between the deformation mechanism and the mechanical properties of Ti6Al4V triply periodic minimal surface (TPMS) structures, such as stretching-dominated IWP and bending-dominated gyroid structures, are investigated using the finite element analysis for uniform and density gradient scaffolds. The method for designing network-based and sheet-based TPMS structures is presented. The numerical results show that failure in the stretching-dominated structure (IWP) starts with buckling of the vertical struts, whereas failure in the bending-dominated structure (gyroid) occurs with the formation of the 45° shear band. The gyroid structure shows a higher shear modulus than the IWP structure. The numerical results exhibit good agreement with the previous experimental data for uniform and density gradient structures. Finally, the effect of the void defect on the elastic and shear moduli is evaluated. The results indicate that the elastic modulus of the bending-dominated structure shows a greater reduction in the presence of void defects than that of the stretching-dominated structure, and the shear modulus of the stretching-dominated structure is more sensitive to void defects than that of the bending-dominated structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Kulkarni, M., Mazare, A., Schmuki, P., and Iglic, A., Biomaterial Surface Modification of Titanium and Titanium Alloys for Medical Applications, in Nanomedicine, Seifalian, A., de Mel, A., and Kalaskar, D.M., Eds., One Central Press, 2014, pp. 111–136.

  2. Patil, P., Pawar, M., and Patil, C.K., Study of Manufacturing of Titanium Knee Implant by Using Additive Manufacturing, Powder Metallurgy, and Conventional Machining, Innov. Res. Sci. Eng., 2016, vol. 2, pp. 152–160.

    Google Scholar 

  3. Awad, M.A., Additive Manufacturing, Make Custom Porous Titanium Implant Possible, J. Oral Hygiene Health, 2016, vol. 4, p. e112. https://doi.org/10.4172/2332-0702.1000e112

  4. Implant Dentistry History. https://www.nobelbiocare.com/en-uk/our-story

  5. Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., and Spence, D.M., Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences, Analyt. Chem., 2014, vol. 86, pp. 3240–3253. https://doi.org/10.1021/ac403397r

    Article  Google Scholar 

  6. Dutta, B. and Froes, F.H., Additive Manufacturing of Titanium Alloys, State of the Art, Challenges, and Opportunities, Hayton, Joe: Elsevier, 2016.

  7. Orthopedic Implants. https://www.3dprintingmedia.network/category/medical/implants

  8. Hungerford, D. and Kenna, R.V., Preliminary Experience with a Total Knee Prosthesis with Porous Coating Used without Cement, Clin. Orthop. Rel. Res., 1983, vol. 176, pp. 95–107.

    Article  Google Scholar 

  9. Hennessy, D.W., Callaghan, J.J., and Liu, S.S., Second-Generation Extensively Porous-Coated THA Stems at Minimum 10-year Followup, Clin. Orthop. Rel. Res., 2009, vol. 467(9), pp. 2290–2296. https://doi.org/10.1007/s11999-009-0831-9

    Article  Google Scholar 

  10. Haddad, S.L., Coetzee, J.C., Estok, R., Fahrbach, K., Banel, D., and Nalysnyk, L., Intermediate and Long-Term Outcomes of Total Ankle Arthroplasty and Ankle Arthrodesis: A Systematic Review of the Literature, J. Bone Joint Surgery. A, 2007, vol. 89(9), pp. 1899–1905. https://doi.org/10.2106/JBJS.F.01149

    Article  Google Scholar 

  11. Grunsven, W.V., Porous Metal Implants for Enhanced Bone Ingrowth and Stability, University of Sheffield, 2014.

  12. Heinl, P., Körner, C., and Singer, R.F., Selective Electron Beam Melting of Cellular Titanium: Mechanical Properties, Adv. Eng. Mater., 2008, vol. 10(9), pp. 882–888. https://doi.org/10.1002/adem.200800137

    Article  Google Scholar 

  13. Heinl, P., Müller, L., Körner, C., Singer, R.F., and Müller, F.A., Cellular Ti-6Al-4V Structures with Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting, Acta Biomater., 2008, vol. 4(5), pp. 1536–1544. https://doi.org/10.1016/j.actbio.2008.03.013

    Article  Google Scholar 

  14. Rodriguez-Contreras, A., Punset, M., Calero, J.A., Javier Gil, F., Ruperez, E., and Manero, J.M., Powder Metallurgy with Space Holder for Porous Titanium Implants: A Review, J. Mater. Sci. Technol., 2021, vol. 76, pp. 129–149. https://doi.org/10.1016/j.jmst.2020.11.005

    Article  Google Scholar 

  15. DePuy Synthes. https://www.jnjmedicaldevices.com/en-US/product/griptionr-tf-acetabular-revision-system

  16. Press-Fit Cup. http://www.altimed.by/en/products/hips/acetabular/press_fit_cup/

  17. Acetabular System. https://www.smith-nephew.com/key-products/orthopaedic-reconstruction/r3-acetabular-system/

  18. Truliant Porous Knee. https://www.avenierrpharma.com/truliant-porous-knee-2/

  19. Murr, L.E., Additive Manufacturing of Biomedical Devices: An Overview, Mater. Technol., 2018, vol. 33, pp. 57–70. https://doi.org/10.1002/jor.23075

    Article  ADS  Google Scholar 

  20. Global 3D Printed Orthopedic Implants Market Research Report 2021, 03-Feb-2021 [Online]. https://360researchreports.com/global-3d-printed-orthopedic-implants-market-17318197

  21. Dall’Ava, L., Hothi, H., Di Laura, A., Henckel, J., and Hart, A., 3D Printed Acetabular Cups for Total Hip Arthroplasty: A Review, Metals, 2019, vol. 9, p. 729. https://doi.org/10.3390/met9070729

    Article  Google Scholar 

  22. Zhang, X.-Y., Fang, G., Leeflang, S., Zadpoor, A.A., and Zhou, J., Topological Design, Permeability and Mechanical Behavior of Additively Manufactured Functionally Graded Porous Metallic Biomaterials, Acta Biomater., 2019, vol. 84, pp. 437–452. https://doi.org/10.1016/j.actbio.2018.12.013

    Article  Google Scholar 

  23. Goodall, R., Hernandez-Nava, E., Jenkins, S., Sinclair, L., Tyrwitt-Jones, E., Khododadi, M., Ip, D., and Gandbeigi, H., The Effects of Defects and Damage in the Mechanical Behavior of Ti6Al4V Lattices, Front. Mater., 2019, vol. 6, p. 117. https://doi.org/10.3389/fmats.2019.00117

    Article  ADS  Google Scholar 

  24. Okolie, O., Stachurek, I., Kandasubramanian, B., and Njuguna, J., 3D Printing for Hip Implant Applications: A Review, Polymers, 2020, vol. 12, p. 2682. https://doi.org/10.3390/polym12112682

    Article  Google Scholar 

  25. Javaid, M. and Haleemb, A., Current Status and Challenges of Additive Manufacturing in Orthopaedics: An Overview, J. Clinic. Orthop. Trauma, 2019, vol. 10, pp. 380–386. https://doi.org/10.1016/j.jcot.2018.05.008

    Article  Google Scholar 

  26. Toyserkani, E., Sarker, D., Obehi Ibhadode, O., Liravi, F., Russo, P., and Taherkhani, K., Metal Additive Manufacturing, John Wiley & Sons, 2021.

  27. Technical Considerations for Additive Manufactured Medical Devices, Center for Devices and Radiological Health, 2017. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices

  28. Martinez-Marquez, D., Jokymaityte, M., Mirnajafizadeh, A., Carty, C.P., Lloyd, D., and Stewart, R.A., Development of 18 Quality Control Gates for Additive Manufacturing of Error Free Patient-Specific Implants, Materials, 2019, vol. 12, p. 3110. https://doi.org/10.3390/ma12193110

  29. Kohli, N., Stoddart, J.C., and van Arkel, R.J., The Limit of Tolerable Micromotion for Implant Osseointegration: A Systematic Review, Sci. Rep., 2021, vol. 11, p. 10797. https://doi.org/10.1038/s41598-021-90142-5

    Article  ADS  Google Scholar 

  30. Ghavidelnia, N., Bodaghi, M., and Hedayati, R., Femur Auxetic Meta-Implants with Tuned Micromotion Distribution, Materials, 2021, vol. 14, p. 114. https://doi.org/10.3390/ma14010114

    Article  ADS  Google Scholar 

  31. Engh, A.C., O’Connor, D., Jasty, M., McGovern, T.F., Bobyn, J.D., and Harris, W.H., Quantification of Implant Micromotion, Strain Shielding, and Bone Resorption with Porous-Coated Anatomic Medullary Locking Femoral Prostheses, Clin. Orthop. Relat. Res., 1992, vol. 258, pp. 13–29.

    Google Scholar 

  32. Goodman, S.B., The Effects of Micromotion and Particulate Materials on Tissue Differentiation: Bone Chamber Studies in Rabbits, Acta Orthop. Scand., 1994, vol. 65, sup. 258, pp. 1–43. https://doi.org/10.3109/17453679409155227

    Article  Google Scholar 

  33. Gao, X., Fraulob, M., and Haïat, G., Biomechanical Behaviours of the Bone–Implant Interface: A Review, J. R. Soc. Interface, 2019, vol. 16, p. 20190259. https://doi.org/10.1098/rsif.2019.0259

    Article  Google Scholar 

  34. Grzeskowiak, R.M., Schumacher, J., Dhar, M.S., Harper, D.P., Mulon, P.-Y., and Anderson, D.E., Bone and Cartilage Interfaces with Orthopedic Implants: A Literature Review, Front. Surg., 2020, vol. 7, p. 601244. https://doi.org/10.3389/fsurg.2020.601244

    Article  Google Scholar 

  35. Gibson, S., EBM Inside. Additive Manufacturing of Orthopedic Implants. https://docplayer.net/1015477-Ebm-inside-additive-manufacturing-of-orthopedic-implants.html

  36. Osseo Ti Porous Metal Technology. https://www.zimmerbiomet.com/en/products-and-solutions/specialties/hip/osseoti-porous-metal-technology.html

  37. Beköz Üllen, N. and Karabulut, G., The Place of Metal Foams in Biomaterial Applications, in 2nd Int. Eurasian Conf. on Science, Engineering and Technology, 2020, pp. 473–479.

  38. Rahimizadeh, A., Nourmohammad, Z., Arabnejad, S., Tanzer, M., and Pasini, D., Porous Architected Biomaterial for a Tibial-Knee Implant with Minimum Bone Resorption and Bone-Implant Interface Micromotion, J. Mech. Behav. Biomed. Mater., 2018, vol. 78, pp. 465–479. https://doi.org/10.1016/j.jmbbm.2017.11.041

    Article  Google Scholar 

  39. Arabnejad, S., Johnston, B., Tanzer, M., and Pasini, D., Fully Porous 3D Printed Titanium Femoral Stem to Reduce Stress-Shielding Following Total Hip Arthroplasty, J. Orthop. Res., 2017, vol. 35, pp. 1774–1783. https://doi.org/10.1002/jor.23445

    Article  Google Scholar 

  40. Arabnejad Khanoki, S. and Pasini, D., Fatigue Design of a Mechanically Biocompatible Lattice for a Proof-of-Concept Femoral Stem, Mech. Behav. Biomed. Mater., 2013, vol. 22, pp. 65–83. https://doi.org/10.1016/j.jmbbm.2013.03.002

    Article  Google Scholar 

  41. Afshar, M., Pourkamali Anaraki, A., and Montazerian, H., Compressive Characteristics of Radially Graded Porosity Scaffolds Architectured with Minimal Surfaces, Mater. Sci. Eng. C, 2018, vol. 92, pp. 254–267. https://doi.org/10.1016/j.msec.2018.06.051

    Article  Google Scholar 

  42. Liu, F., Mao, Z., Zhang, P., Zhang, D., Jiang, J., and Ma, Z., Functionally Graded Porous Scaffolds in Multiple Patterns: New Design Method, Physical and Mechanical Properties, Mater. Design, 2018, vol. 160, pp. 849–860. https://doi.org/10.1016/j.matdes.2018.09.053

    Article  Google Scholar 

  43. Al-Ketan, O., Lee, D.-W., Rowshan, R., and K. Abu Al-Rub, R., Functionally Graded and Multi-Morphology Sheet TPMS Lattices: Design, Manufacturing, and Mechanical Properties, J. Mech. Behav. Biomed. Mater., 2020, vol. 102, p. 103520. https://doi.org/10.1016/j.jmbbm.2019.103520

    Article  Google Scholar 

  44. Yang, N., Quan, Z., Zhang, D., and Tian, Y., Multi-Morphology Transition Hybridization CAD Design of Minimal Surface Porous Structures for Use in Tissue Engineering, Comp. Aided Design, 2014, vol. 56, pp. 11–21. https://doi.org/10.1016/j.cad.2014.06.006

    Article  Google Scholar 

  45. Kadkhodapour, J., Montazerian, H., and Raeisi, S., Investigating Internal Architecture Effect in Plastic Deformation and Failure for TPMS-Based Scaffolds Using Simulation Methods and Experimental Procedure, Mater. Sci. Eng. C, 2014, vol. 43, pp. 587–597. https://doi.org/10.1016/j.msec.2014.07.047

    Article  Google Scholar 

  46. Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., and Ashcroft, I.A., Compressive Failure Modes and Energy Absorption in Additively Manufactured Double Gyroid Lattices, Addit. Manuf., 2017, vol. 16, pp. 24–29. https://doi.org/10.1016/j.addma.2017.04.003

    Article  Google Scholar 

  47. Kadkhodapour, J., Montazerian, H., Darabi, A.Ch., Anaraki, A.P., Ahmadi, S.M., Zadpoor, A.A., and Schmauder, S., Failure Mechanisms of Additively Manufactured Porous Biomaterials: Effects of Porosity and Type of Unit Cell, J. Mech. Behav. Biomed. Mater., 2015, vol. 50, pp. 180–191. https://doi.org/10.1016/j.jmbbm.2015.06.012

    Article  Google Scholar 

  48. Schnering, H.G.Y. and Nesper, R., Nodal Surfaces of Fourier Series: Fundamental Invariants of Structured Matter, Zeitschrift für Physik. B. Condens. Matter, 1991, vol. 83, pp. 407–412. https://doi.org/10.1007/BF01313411

    Article  ADS  Google Scholar 

  49. Kadkhodapour, J., Montazerian, H., Darabi, A.C., Zargarian, A., and Schmauder, S., The Relationships between Deformation Mechanisms and Mechanical Properties of Additively Manufactured Porous Biomaterials, J. Mech. Behav. Biomed. Mater., 2017, vol. 70, pp. 28–42. https://doi.org/10.1016/j.jmbbm.2016.09.018

    Article  Google Scholar 

  50. Echeta, I., Feng, X., Dutton, B., Leach, R., and Piano, S., Review of Defects in Lattice Structures Manufactured by Powder Bed Fusion, Int. J. Adv. Manuf. Technol., 2020, vol. 106, pp. 2649–2668. https://doi.org/10.1007/s00170-019-04753-4

    Article  Google Scholar 

  51. Pasini, D. and Guest, J.K., Imperfect Architected Materials: Mechanics and Topology Optimization, MRS Bullet., 2019, vol. 44, pp. 766–772. https://doi.org/10.1557/mrs.2019.231

    Article  ADS  Google Scholar 

  52. Lu, Y., Cheng, L., Yang, Z., Li, J., and Zhu, H., Relationship between the Morphological, Mechanical and Permeability Properties of Porous Bone Scaffolds and the Underlying Microstructure, PLOS ONE, 2020, vol. 15, p. e0238471. https://doi.org/10.1371/journal.pone.0238471

  53. Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties, Cambridge: Cambridge University Press, 1997.

  54. El Elmi, A., Melancon, D., Asgari, M., Liu, L., and Pasini, D., Experimental and Numerical Investigation of Selective Laser Melting-Induced Defects in Ti–6Al–4V Octet Truss Lattice Material: The Role of Material Microstructure and Morphological Variations, J. Mater. Res., 2020, vol. 35, pp. 1900–1912. https://doi.org/10.1557/jmr.2020.75

    Article  ADS  Google Scholar 

  55. Dallago, M., Zanini, F., Carmignato, S., Pasinic, D., and Benedetti, M., Effect of the Geometrical Defectiveness on the Mechanical Properties of SLM Biomedical Ti6Al4V Lattices, Proc. Struct. Integr., 2018, vol. 13, pp. 161–167. https://doi.org/10.1016/j.prostr.2018.12.027

    Article  Google Scholar 

  56. Schoenfeld, C.M., Lautenschlager, E.P., and Meyer, P.R., Mechanical Properties of Human Cancellous Bone in the Femoral Head, Med. Biol. Eng., 1974, pp. 313–317. https://doi.org/10.1007/BF02477797

  57. Lee, S., Porter, M., Wasko, S., Lau, G., and Chen, P.Y., Potential Bone Replacement Materials Prepared by Two Method, Cambridge: Cambridge University Press, 2012, vol. 1418, pp. 177–188. https://doi.org/10.1557/opl.2012.671

  58. Golstein, S.A., The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function, Biomechanics, 1987, vol. 20, pp. 1055–1061. https://doi.org/10.1016/0021-9290(87)90023-6

    Article  Google Scholar 

  59. Wang, S., Zhou, X., Liu, L., Shi, Z.A., and Hao, Y., On the Design and Properties of Porous Femoral Stems with Adjustable Stiffness Gradient, Med. Eng. Phys., 2020, vol. 81, pp. 30–38. https://doi.org/10.1016/j.medengphy.2020.05.003

    Article  Google Scholar 

  60. Alkhatib, S.E., Tarlochan, F., Mehboob, H., Singh, R., Kadirgama, K., and Harun, W.S.B.W., Finite Element Study of Functionally Graded Porous Femoral Stems Incorporating Body-Centered Cubic Structure, Artif Organs, 2019, vol. 43(7), pp. 152–164. https://doi.org/10.1111/aor.13444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Rahmat or J. Kadkhodapour.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 2, pp. 89–105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmat, N., Kadkhodapour, J. & Arbabtafti, M. Mechanical Characterization of Additively Manufactured Orthopedic Cellular Implants: Case Study on Different Cell Types and Effect of Defects. Phys Mesomech 26, 443–458 (2023). https://doi.org/10.1134/S1029959923040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923040069

Keywords:

Navigation