Skip to main content
Log in

A Numerical Study of the Contribution of Different Slip Systems to the Deformation Response of Polycrystalline Titanium

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Deformation behavior of polycrystalline titanium was studied by numerical simulation in the micromechanical and crystal plasticity frameworks. A three-dimensional model of a polycrystalline structure was generated by the step-by-step packing method based on experimental data. The constitutive equations describing the deformation behavior of grains were derived on the basis of crystal plasticity theory, taking into account the specific crystal structure and dislocation glide on prismatic, basal, and pyramidal slip systems in hcp crystals. A boundary value problem of elastic-plastic deformation of model structures was numerically solved by the finite element method. The verification of the developed model was performed by calculating the elastic-plastic deformation of titanium single crystals with different orientations. Using the model, the contribution of different slip systems to the deformation response of a polycrystal was numerically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Panin, V.E., Surikova, N.S., Lider, A.M., Bordulev, Yu.S., Ovechkin, B.B., Khayrullin, R.R., and Vlasov, I.V., Multiscale Mechanism of Fatigue Fracture of Ti–6A1–4V Titanium Alloy within the Mesomechanical Space-Time-Energy Approach, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 452–463. https://doi.org/10.1134/S1029959918050090

    Article  Google Scholar 

  2. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D., Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater., 2010, vol. 58, pp. 1152–1211. https://doi.org/10.1016/j.actamat.2009.10.058

    Article  ADS  Google Scholar 

  3. Diard, O., Leclercq, S., Rousselier, G., and Cailletaud, G., Evaluation of Finite Element Based Analysis of 3D Multicrystalline Aggregates Plasticity. Application to Crystal Plasticity Model Identification and the Study of Stress and Strain Fields near Grain Boundaries, Int. J. Plasticity, 2005, vol. 21, pp. 691–722. https://doi.org/10.1016/j.ijplas.2004.05.017

    Article  Google Scholar 

  4. Trusov, P.V. and Shveykin, A.I., Multilevel Crystal Plasticity Models of Single- and Polycrystals. Direct Models, Phys. Mesomech., 2013, vol. 16, no. 2, pp. 99–124. https://doi.org/10.1134/S1029959913020021

    Article  Google Scholar 

  5. Romanova, V., Balokhonov, R., Panin, A., Kazachenok, M., and Kozelskaya, A., Micro- and Mesomechanical Aspects of Deformation-Induced Surface Roughening in Polycrystalline Titanium, Mater. Sci. Eng. A, 2017, vol. 697, pp. 248–258. https://doi.org/10.1016/j.msea.2017.05.029

    Article  Google Scholar 

  6. Won, J.W., Park, K.-T., Hong, S.-G., and Lee, C.S., Anisotropic Yielding Behavior of Rolling Textured High Purity Titanium, Mater. Sci. Eng. A, 2015, vol. 637, pp. 215–221. https://doi.org/10.1016/j.msea.2015.03.096

    Article  Google Scholar 

  7. Ren, J.Q., Wang, Q., Lu, X.F., Liu, W.F., Zhang, P.L., and Zhang, X.B., Effect of Oxygen Content on Active Deformation Systems in Pure Titanium Polycrystals, Mater. Sci. Eng. A, 2018, vol. 731, pp. 530–538. https://doi.org/10.1016/j.msea.2018.06.083

    Article  Google Scholar 

  8. Wu, X., Kalidindi, S.R., Necker, C., and Salem, A.A., Prediction of Crystallographic Texture Evolution and Anisotropic Stress–Strain Curves during Large Plastic Strains in High Purity α-Titanium Using a Taylor-Type Crystal Plasticity Model, Acta Mater., 2007, vol. 55(2), pp. 423–432. https://doi.org/10.1016/j.actamat.2006.08.034

    Article  ADS  Google Scholar 

  9. Wang, L., Barabash, R.I., Yang, Y., Bieler, T.R., Crimp, M.A., Eisenlohr, P., Liu, W., and Ice, G.E., Experimental Characterization and Crystal Plasticity Modeling of Heterogeneous Deformation in Polycrystalline α-Ti, Metall. Mater. Trans. A, 2011, vol. 42, pp. 626–635. https://doi.org/10.1007/s11661-010-0249-8

    Article  Google Scholar 

  10. Pagan, D.C., Shade, P.A., Barton, N.R., Park, J.-S., Kenesei, P., Menasche, D.B., and Bernier, J.V., Modeling Slip System Strength Evolution in Ti-7Al Informed by In-Situ Grain Stress Measurements, Acta Mater., 2017, vol. 128, pp. 406–417. https://doi.org/10.1016/j.actamat.2017.02.042

    Article  ADS  Google Scholar 

  11. Zhang, L., Xu, W., Long, J., and Lei, Z., Surface Roughening Analysis of Cold Drawn Tube Based on Macro-Micro Coupling Finite Element Method, J. Mater. Process. Technol., 2015, vol. 224, pp. 189–199. https://doi.org/10.1016/j.jmatprotec.2015.05.009

    Article  Google Scholar 

  12. Gong, J. and Wilkinson, A.J., Anisotropy in the Plastic Flow Properties of Single-Crystal α-Titanium Determined from Micro-Cantilever Beams, Acta Mater., 2009, vol. 57(19), pp. 5693–5705. https://doi.org/10.1016/j.actamat.2009.07.064

    Article  ADS  Google Scholar 

  13. Trusov, P.V. and Kondratyev, N.S., Two-Level Elastoviscoplastic Model: An Application to the Analysis of Grain Structure Evolution under Static Recrystallization, Phys. Mesomech., 2019, vol. 22, no. 3, pp. 230–241. https://doi.org/10.1134/S1029959919030081

    Article  Google Scholar 

  14. Knezevic, M., Lebensohn, R.A., Cazacu, O., Revil-Baudard, B., Proust, G., Vogel, S.C., and Nixon, M.E., Modeling Bending of α-Titanium with Embedded Polycrystal Plasticity in Implicit Finite Elements, Mater. Sci. Eng. A, 2013, vol. 564, pp. 116–126. https://doi.org/10.1016/j.msea.2012.11.037

    Article  Google Scholar 

  15. Panin, A.V., Kazachenok, M.S., Perevalova, O.B., Sinyakova, E.A., Krukovsky, K.V., and Martynov, S.A., Multiscale Deformation of Commercial Titanium and Ti–6Al-4V Alloy Subjected to Electron Beam Surface Treatment, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 441–451. https://doi.org/10.1134/S1029959918050089

    Article  Google Scholar 

  16. Solhjoo, S., Halbertsma, P.J., Veldhuis, M., Toljaga, R., Pei, Y., and Vakis, A.I., Effects of Loading Conditions on Free Surface Roughening of AISI 420 Martensitic Stainless Steel, J. Mater. Process. Technol., 2020, vol. 275, pp. 116311. https://doi.org/10.1016/j.jmatprotec.2019.116311

    Article  Google Scholar 

  17. Marchenko, A., Maziere, M., Forest, S., and Strudel, J.L., Crystal Plasticity Simulation of Strain Aging Phenomena in α-Titanium at Room Temperature, Int. J. Plasticity, 2016, vol. 85, pp. 1–33. https://doi.org/10.1016/j.ijplas.2016.05.007

    Article  Google Scholar 

  18. Bridier, F., Villechaise, P., and Mendez, J., Analysis of the Different Slip Systems Activated by Tension in a α/β Titanium Alloy in Relation with Local Crystallographic Orientation, Acta Mater., 2005, vol. 53(3), pp. 555–567. https://doi.org/10.1016/j.actamat.2004.09.040

    Article  ADS  Google Scholar 

  19. Wang, X., Cazes, F., Li, J., Hocini, A., Ameyama, K., and Dirras, G., A 3D Crystal Plasticity Model of Monotonic and Cyclic Simple Shear Deformation for Commercial-Purity Polycrystalline Ti with a Harmonic Structure, Mech. Mater., 2019, vol. 128, pp. 117–128. https://doi.org/10.1016/j.mechmat.2018.10.006

    Article  Google Scholar 

  20. Liu, J., Li, J., Dirras, G., Ameyama, K., Cazes, F., and Ota, M., A Three-Dimensional Multi-Scale Polycrystalline Plasticity Model Coupled with Damage for Pure Ti with Harmonic Structure Design, Int. J. Plastisity, 2018, vol. 100, pp. 192–207. https://doi.org/10.1016/j.ijplas.2017.10.006

    Article  Google Scholar 

  21. Dick, T. and Cailletaud, G., Fretting Modelling with a Crystal Plasticity Model of Ti6Al4V, Comput. Mater. Sci., 2006, vol. 38(1), pp. 113–125. https://doi.org/10.1016/j.commatsci.2006.01.015

    Article  Google Scholar 

  22. Doquet, V. and Barkia, B., A Micromechanical Model of the Viscoplastic Behaviour of Titanium Accounting for Its Anisotropic and Strain-Rate-Dependent Viscosity, Mech. Time-Depend. Mater., 2015, vol. 19(2), pp. 153–166. https://doi.org/10.1007/s11043-015-9257-9

    Article  ADS  Google Scholar 

  23. Getting Started with Abaqus: Keywords Edition, ABAQUS 6.12 PDF Documentation, 2012.

  24. Panin, A.V., Kazachenok, M.S., Romanova, V.A., Balokhonov, R.R., Kozelskaya, A.I., Sinyakova, E.A., and Krukovskii, K.V., Strain-Induced Surface Roughening in Polycrystalline VT1-0 Titanium Specimens under Uniaxial Tension, Phys. Mesomech., 2018, vol. 21, no. 3, pp. 249–257. https://doi.org/10.1134/S1029959918030098

    Article  Google Scholar 

  25. Romanova, V.A. and Balokhonov, R.R., A Method of Step by Step Packing and Its Application in Generating 3D Microstructures of Polycrystalline and Composite Materials, Eng. Comput., 2019. https://doi.org/10.1007/s00366-019-00820-2

  26. Romanova, V.A., Balokhonov, R.R., Batukhtina, E.E., Emelianova, E.S., and Sergeev, M.V., On the Solution of Quasi-Static Micro- and Mesomechanical Problems in a Dynamic Formulation, Phys. Mesomech., 2019, vol. 22, no. 4, pp. 296–306. https://doi.org/10.1134/S1029959919040052

    Article  Google Scholar 

  27. Romanova, V., Balokhonov, R., Emelianova, E., Zinovieva, O., and Zinoviev, A., Microstructure-Based Simulations of Quasistatic Deformation Using an Explicit Dynamic Approach, Facta Univ. Mech. Eng., 2019, vol. 17(2), pp. 243–254. https://doi.org/10.22190/FUME190403028R

    Article  Google Scholar 

  28. Busso, E.P. and Cailletaud, G., On the Selection of Active Slip Systems in Crystal Plasticity, Int. J. Plasticity, 2005, vol. 21, pp. 2212–2231.

    Article  Google Scholar 

  29. Panin, A.V., Kazachenok, M.S., Kozelskaya, A.I., Balokhonov, R.R., Romanova, V.A., Perevalova, O.B., and Pochivalov, Y.I., The Effect of Ultrasonic Impact Treatment on the Deformation Behavior of Commercially Pure Titanium under Uniaxial Tension, Mater. Des., 2017, vol. 117, pp. 371–381. https://doi.org/10.1016/j.matdes.2017.01.006

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (Project No. 20-19-00600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Romanova.

Additional information

Translated from in Fizicheskaya Mezomekhanika, 2020, Vol. 23, No. 4, pp. 68–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelianova, E.S., Romanova, V.A., Balokhonov, R.R. et al. A Numerical Study of the Contribution of Different Slip Systems to the Deformation Response of Polycrystalline Titanium. Phys Mesomech 24, 166–177 (2021). https://doi.org/10.1134/S1029959921020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921020065

Keywords:

Navigation