Skip to main content
Log in

A Simplified Probabilistic Model for Nanocrack Propagation and Its Implications for Tail Distribution of Structural Strength

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper presents a simplified probabilistic model for thermally activated nanocrack propagation. In the continuum limit, the probabilistic motion of the nanocrack tip is mathematically described by the Fokker-Planck equation. In the model, the drift velocity is explicitly related to the energy release rate at the crack tip through the transition rate theory. The model is applied to analyze the propagation of an edge crack in a nanoscale element. The element is considered to reach failure when the nanocrack propagates to a critical length. The solution of the Fokker-Planck equation indicates that both the strength and lifetime distributions of the nanoscale element exhibit a power-law tail behavior but with different exponents. Meanwhile, the model also yields a mean stress-life curve of the nanoscale element. When the applied stress is sufficiently large, the mean stress-life curve resembles the nasquin law for fatigue failure. nased on a recently developed finite weakest-link model as well as level excursion analysis of the failure statistics of quasi-brittle structures, it is argued that the simulated power-law tail of strength distribution of the nanoscale element has important implications for the tail behavior of the strength distribution of macroscopic structures. It provides a physical justification for the two-parameter Weibull distribution for strength statistics of large-scale quasi-brittle structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bažant, Z.P. and Pang, S.D., Activation Energy Based Extreme Value Statistics and Size Effect in Brittle and Quasi-brittle Fracture, J. Mech. Phys. Solids, 2007, vol. 55, pp. 91–134.

    Article  ADS  MATH  Google Scholar 

  2. Bažant, Z.P., Le, J.-L., and Bažant, M.Z., Scaling of Strength and Lifetime Distributions of Quasi-brittle Structures Based on Atomistic Fracture Mechanics, Proc. Natl Acad. Sci., 2009, vol. 106, pp. 11484–11489.

    Article  ADS  Google Scholar 

  3. Le, J.-L., Bažant, Z.P., and Bažant, M.Z., Unified Nano-mechanics Based Probabilistic Theory of Quasi-brittle and Brittle Structures: I. Strength, Crack Growth, Life-time and Scaling, J. Mech. Phys. Solids, 2011, vol. 59, pp. 1291–1321.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Le, J.-L. and Bažant, Z.P., Unified Nano-Mechanics Based Probabilistic Theory of Quasi-brittle and Brittle Structures: II. Fatigue Crack Growth, Lifetime and Scaling, J. Mech. Phys. Solids, 2011, vol. 59, pp. 1322–1337.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Genet, M., Couégnat, G., Tomsia, A.P., and Ritchie, R.O., Scaling Strength Distributions in Quasi-brittle Materials from Micro- to Macroscales: A Computational Approach to Modeling Natureinspired Structural Ceramics, J. Mech. Phys. Solids, 2014, vol. 68, pp. 93–106.

    Article  ADS  MathSciNet  Google Scholar 

  6. Xu, Z. and Le, J.-L., A First Passage Model for Probabilistic Failure of Polycrystalline Silicon MEMS Structures, J. Mech. Phys. Solids, vol. 99, pp. 225–241.

  7. Bažant, Z.P. and Le, J.-L., Probabilistic Mechanics of Quasi-brittle Structures: Strength, Lifetime, and Size Effect, Cambridge: Cambridge University Press, 2017.

    MATH  Google Scholar 

  8. Omeltchenko, A., Yu, J., Kalia, R.K., and Vashishta, P., Crack Front Propagation and Fracture in a Graphite Sheet: A Molecular Dynamics Study on Parallel Computers, Phys. Rev. Lett., 1997, vol. 78, no. 11, pp. 2148–2151.

    Article  ADS  Google Scholar 

  9. Marder, M., Effect of Atoms on Brittle Fracture, Int. J. Frac., 2004, vol. 130, pp. 517–555.

    Article  Google Scholar 

  10. Khare, R., Mielke, S.L., Paci, J.T., Zhang, S.L., Ballarini, R., Schatz, G.C., and Belytschko, T., Coupled Quantum Mechanical/Molecular Mechanical Modeling of the Fracture of Defective Carbon Nanotubes and Graphene Sheets, Phys. Rev. B, 2007, vol. 75, no. 7, p. 075412.

    Article  ADS  Google Scholar 

  11. Khare, R., Mielke, S.L., Schatz, G.C., and Belytschko, T., Multiscale Coupling Schemes Spanning the Quantum Mechanical, Atomistic Forcefield, and Continuum Regimes, Comp. Meth. Appl. Mech. Engrg., 2008, vol. 197, pp. 3190–3202.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Buehler, M.J., Atomistic Modeling of Materials Failure, New York: Spinger, 2008.

    Book  Google Scholar 

  13. Tadmor, E.B. and Miller, R.E., Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge: Cambridge University Press, 2011.

    Book  MATH  Google Scholar 

  14. Abraham, F.F., Broughton, J.Q., Bernstein, N., and Kaxiras, E., Spanning the Continuum to Quantum Length Scales in a Dynamical Simulation of Brittle Fracture, Europhys. Lett., 1998, vol. 44, no. 6, pp. 783–787.

    Article  ADS  Google Scholar 

  15. Broughton, J.Q., Abraham, F.F., Bernstein, N., and Kaxiras, E., Concurrent Coupling of Length Scales: Methodology and Application, Phys. Rev. B, 1999, vol. 60, pp. 2391–2403.

    Article  ADS  Google Scholar 

  16. Xu, M., Tabarraei, A., Paci, J.T., Oswald, J., and Belytschko, T., A Coupled Quantum/Continuum Mechanics Study of Graphene Fracture, Int. J. Frac., 2012, vol. 173, no. 2, pp. 163–173.

    Article  Google Scholar 

  17. Krausz, A.S. and Krausz, K., Fracture Kinetics of Crack Growth, Netherlands: Kluwer Academic Publisher, 1988.

    Book  MATH  Google Scholar 

  18. Kramers, H.A., Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reaction, Physica, 1940, vol. 7, pp. 284–304.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Risken, H., The Fokker—Planck Equation, Berlin: Springer-Verlag, 1989.

    Book  MATH  Google Scholar 

  20. Barenblatt, G.I., The Formation of Equilibrium Cracks during Brittle Fracture, General Ideas and Hypothesis, Axially Symmetric Cracks, Prikl. Mat. Mekh., 1959, vol. 23, no. 3, pp. 434–444.

    MATH  Google Scholar 

  21. Barenblatt, G.I., The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mech., 1962, vol. 7, pp. 55–129.

    Article  MathSciNet  Google Scholar 

  22. Bažant, Z.P. and Planas, J., Fracture and Size Effect in Concrete and Other Quasi-brittle Materials, Boca Raton: CRC Press, 1998.

    Google Scholar 

  23. Redner, V., A Guide to First-Passage Processes, Cambridge: Cambridge University Press, 2001.

    Book  MATH  Google Scholar 

  24. Basquin, O.H., The Exponential Law of Endurance Tests, Proc. Am. Soc. Test. Mater. ASTE, 1910, vol. 10, pp. 625–630.

    Google Scholar 

  25. Kawakubo, T., Fatigue Crack Growth Mechanics in Ceramics, Cyclic Fatigue in Ceramics, Kishimoto, H., Hoshide, T., Okabe, N., Eds., New York: Elsevier, 1995, pp. 123–137.

  26. Le, J.-L., Manning, J., and Labuz, J.F., Scaling of Fatigue Crack Growth in a Rock, Int. J. Rock Mech. Min. Sci., 2014, vol. 72, pp. 71–79.

    Article  Google Scholar 

  27. Salviato, M. and Bažant, Z.P., The Asymptotic Stochastic Strength of Bundles of Elements Exhibiting General Stress—Strain Laws, Prob. Engrg Mech., 2014, vol. 36, pp. 1–7.

    Article  Google Scholar 

  28. dos Santos, C., Strecker, K., Piorino Neto, F., de Macedo Silva, O.M., Baldacum, V.A., and da Silva, C.R.M., Evaluation of the Reliability of Si3N4—Al2O3—CTR2O3 Ceramics Through Weibull Analysis, Mater. Res., 2003, vol. 6, no. 4, pp. 463–467.

    Article  Google Scholar 

  29. Salem, J.A., Nemeth, N.N., Powers, L.P., and Choi, V.R. Reliability Analysis of Uniaxially Ground Brittle Materials, J. Engrg Gas Turbines Power, 1996, vol. 118, pp. 863–871.

    Article  Google Scholar 

  30. Gross, B., Least Squares Best Fit Method for the Three Parameter Weibull Distribution: Analysis of Tensile and Bend Specimens with Volume or Surface Flaw Failure, NASA Technical Report, 1996, TM-4721, pp. 1–21.

    Google Scholar 

  31. Le, J.-L., Cannone Falchetto, A., and Marasteanu, M.O., Determination of Strength Distribution of Quasi-brittle Structures from Mean Size Effect Analysis, Mech. Mater., 2013, vol. 66, pp. 79–87.

    Article  Google Scholar 

  32. Vanmarcke, E., Random Fields Analysis and Synthesis, Singapore: World Vcientific Publishers, 2010.

    Book  MATH  Google Scholar 

  33. Xu, Z. and Le, J.-L., On Power-Law Tail Distribution of Strength Statistics of Brittle and Quasi-brittle Structures, Eng. Frac. Mech., 2018, vol. 197, pp. 80–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-L. Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, JL., Xu, Z. A Simplified Probabilistic Model for Nanocrack Propagation and Its Implications for Tail Distribution of Structural Strength. Phys Mesomech 22, 85–95 (2019). https://doi.org/10.1134/S1029959919020012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919020012

Keywords

Navigation