Skip to main content
Log in

Electron Microscopic Analysis of the Nb5Si3/NBC/NbSi2 Composite Structure

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of studying a composite material based on Nb–Si–C are presented. The alloy was obtained by aluminothermic self-propagating high-temperature synthesis. To prepare the initial charge a mixture of powders of commercial niobium pentoxide Nb2O5 and commercial silicon carbide SiC was used. The process of niobium oxide Nb2O5 reduction was implemented using an aluminum powder. The study of the Nb–Si–C ternary system is of interest in terms of obtaining high-temperature materials of new generation for gas turbine engine construction capable of replacing heat-resistant nickel alloys, as well as the potential possibility of forming MAX phases (Mn + 1AXn phases, where n = 1, 2, 3, … ; M is the transition d-metal; A is the p-element; and X is carbon). The phase composition of the obtained Nb–Si–C composite was studied by X-ray diffraction. It has been shown that as a result of high-temperature synthesis NbC carbide and γ-Nb5Si3 and NbSi2 silicides are formed which are competing relative to the Nb2SiC MAX phase. The formation of Nb2SiC under the selected synthesis conditions was not detected. Using scanning electron microscopy and X-ray spectral analysis, the morphological distribution of the phases formed during high-temperature synthesis is analyzed in detail. It is shown that NbC carbide makes up the majority of the volume of the composite and is present in the form of pyramidal-shaped particles with a pyramid face size of ~10 μm. NbSi2 silicides are elongated rod-shaped particles with smooth edges measuring 30 × 80 μm; Nb5Si3 silicides do not have a specific shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. J. Geng, Development of Niobium Silicide Based in Situ Composites. Next Generation Materials for High Temperature Applications (Lap Lambert Acad. Publ., 2012).

    Google Scholar 

  2. B. P. Bewlay, M. R. Jackson, J.-C. Zhao, and P. R. Subramanian, Metall. Mater. Trans. A 34, 2043 (2003). https://www.doi.org/10.1007/s11661-003-0269-8

    Article  Google Scholar 

  3. M. I. Karpov, Metalloved. Term. Obrab. 751 (1), 9 (2018).

    Google Scholar 

  4. I. L. Svetlov, Materialovedenie, Nos. 9–10, 18 (2010).

  5. M. I. Karpov, V. I. Vnukov, T. S. Stroganova, D. V. Prokhorov, I. S. Zheltyakova, B. A. Gnesin, V. M. Kiiko, and I. L. Svetlov, Izv. Ross. Akad. Nauk, Ser. Fiz. 83 (10), 1353 (2019). https://www.doi.org/10.1134/S0367676519100156

  6. Y. Garip, Arch. Metall. Mater. 65 (2), 917 (2020). https://www.doi.org/10.24425/amm.2020.132839.

    Article  CAS  Google Scholar 

  7. E. M. Savitsky, Yu. V. Efimov, O. I. Bodak, O. I. Kharchenko, and E. A. Myasnikov, Neorg. Mater. 17 (12), 2207 (1981).

    Google Scholar 

  8. N. A. Kuzmina, E. I. Marchenko, N. N. Eremin, and D. A. Yakushev, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater. 61 (1), 15 (2018). https://www.doi.org/10.18577/2307-6046-2018-0-1-2-2.

  9. M. Fujikura, A. Kasama, R. Tanaka, and S. Hanada, Mater. Trans. A 45 (2), 493 (2004). https://doi.org/10.2320/matertrans.45.493

    Article  CAS  Google Scholar 

  10. Q. S. Yu, H. Y. Fang, and K. Y. Wang, Sci. China Ser. E: Technol. Sci. 52 (1), 37 (2009). https://doi.org/10.1007/s11431-008-0297-0

    Article  CAS  Google Scholar 

  11. D. Fei, J. Lina, Y. Sainan, S. Linfen, W. Junfei, and Z. Hu, Chin. J. Aeronaut. 27 (2), 438 (2014). https://doi.org/10.1016/j.cja.2013.07.032

    Article  Google Scholar 

  12. S. Zhang and X. Guo, Intermetallics 70, 33 (2016). https://doi.org/10.1016/j.intermet.2015.12.002

    Article  CAS  Google Scholar 

  13. W. Liu and J. B. Sha, Mater. Design 111, 301 (2016). https://doi.org/10.1016/j.matdes.2016.08.087

    Article  CAS  Google Scholar 

  14. O. A. Shkoda and O. V. Lapshin, Int. J. Self-Propag. High-Temp. Synth. 29 (2), 96 (2020). https://www.doi.org/10.3103/S1061386220020144

    Article  CAS  Google Scholar 

  15. Y. Wang, Q. Liu, L. Zhang, and L. Cheng, J. Coat. Technol. Res. 6 (3), 413 (2009). https://www.doi.org/10.1007/s11998-008-9129-1

    Article  CAS  Google Scholar 

  16. N. Nedfors, O. Tengstrand, A. Flink, P. Eklund, L. Hultman, and U. Jansson, Thin Solid Films 545, 272 (2013). https://doi.org/10.1016/j.tsf.2013.08.066

    Article  CAS  Google Scholar 

  17. H. Li, Z. Nong, Q. Xu, Q. Song, Y. Chen, T. Man, and Ch. Hao, IOP Conf. Ser.: Earth Environ. Sci. 714, 032008 (2021). https://www.doi.org/10.1088/1755-1315/714/3/032008

  18. M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000). https://www.doi.org/10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  19. R. A. Andrievskii, Usp. Fiz. Nauk 187 (3), 296 (2017). https://doi.org/10.3367/UFNr.2016.09.037972

    Article  Google Scholar 

  20. F. Shiquan, G. Feng, M. Feng, W. Zheng, Y. Chaosheng, X. Cheng, and Y. Kun, Chem. Phys. 551, 111321 (2021). https://www.doi.org/10.1016/j.chemphys.2021.111321

    Article  Google Scholar 

  21. B. Ghebouli, M. A. Ghebouli, M. Fatmi, L. Louail, T. Chihi, and A. Bouhemadou, Trans. Nonferrous Met. Soc. China 25, 915 (2015). https://www.doi.org/10.1016/S1003-6326(15)63680-9

    Article  CAS  Google Scholar 

  22. A. Grechnev, S. Li, and R. Ahuja, Appl. Phys. Lett. 85 (15), 3071 (2004). https://doi.org/10.1063/1.1791734

    Article  CAS  Google Scholar 

  23. Material-Forming Highly Exothermic Processes: Metallothermy and Combustion of Thermite-Type Systems, Ed. by M. I. Alymov (Ross. Akad. Nauk, Moscow, 2021) [in Russian].

    Google Scholar 

  24. R. M. Nikonova, N. S. Larionova, V. I. Lad’yanov, B. E. Pushkarev, and A. V. Panteleyeva, Structure and phase composition of Nb-Si-C-based composites prepared by SHS method, in Proceedings of XV International Symposium on Self-Propagating High-Temperature Synthesis (Chernogolovka, Moscow, 2019), p. 301.

  25. S. N. Perevislov, V. V. Semenova, and A. S. Lysenkov, Zh. Neorg. Khim. 66 (8), 987 (2021). https://doi.org/10.31857/S0044457X21080213

    Article  Google Scholar 

  26. E. V. Shelekhov and T. A. Sviridova, Metal Sci. Heat Treat. 42, 309 (2000). https://doi.org/10.1007/BF02471306

    Article  CAS  Google Scholar 

  27. H. Nowotny, H. Boiler, and G. Zwilling, Carbides and silicides, in Proceedings of the 5th Materials Research Symposium Sponsored by the Institute for Materials Research (National Bureau of Standards, Gaithersburg, 1971), p. 783.

Download references

Funding

The research was carried out using the equipment of the Center of the Physical and Physicochemical Methods of Analysis, Investigation of the Properties and Characteristics of the Surface, Nanostructures, Materials, and Products, Ural Branch, Russian Academy of Sciences within the framework of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (state registration number 121030100001-3). We are grateful to V.A. Karev for obtaining samples using the SHS method and I.K. Averkiev for scanning electron microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Nikonova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonova, R.M., Larionova, N.S. & Lad’yanov, V.I. Electron Microscopic Analysis of the Nb5Si3/NBC/NbSi2 Composite Structure. J. Surf. Investig. 18, 235–240 (2024). https://doi.org/10.1134/S1027451024010300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010300

Keywords:

Navigation