Skip to main content
Log in

Effect of the Annealing Conditions on the Formation of a Nanocrystalline Phase in TiOx Films

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The annealing of amorphous TiOx films obtained by electron-beam evaporation under atmospheric conditions at temperatures from 300 to 400°C is found to lead to the formation of an anatase crystalline phase. According to Raman spectroscopy data, the increase in the fraction of the crystalline phase stops at an annealing temperature above 350°C. According to the results of X-ray diffraction analysis, the average crystallite diameter is about 23 nm. Electron-microscopy studies show that, upon annealing, the surface layer (15 nm thick) crystallizes in the films, and TiO2 nanocrystals with sizes from 4 to 10 nm are formed in the bulk. As the depth increases, the number of nanocrystals decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J.-H. Lim, D. Bae, and A. Fong, J. Agric. Food Chem. 66, 13533 (2018). https://doi.org/10.1021/acs.jafc.8b06571

    Article  CAS  Google Scholar 

  2. V. Moreno, M. Zougagh, and A. Rios, Anal. Chim. Acta 1050, 169 (2019). https://doi.org/10.1016/j.aca.2018.10.067

    Article  CAS  Google Scholar 

  3. A. D. Modestov and O. Lev, J. Photochem. Photobiol., A 112, 261 (1998). https://doi.org/10.1016/s1010-6030(97)00269-4

    Article  CAS  Google Scholar 

  4. B. A. Movchan, J. Mater. 48, 40 (1996). https://doi.org/10.1007/BF03223243

    Article  CAS  Google Scholar 

  5. J. Singh, ASM J. 12, 27 (1996).

    Google Scholar 

  6. W. K. Halan and D. Lee, in High-Temperature Protective Coatings, Ed. by S. C. Singhal (Warrendale: Metall. Soc. AIME, 1983), p. 3.

    Google Scholar 

  7. R. Saravanan, F. Gracia, and A. Stephen, in Nanocomposites for Visible Light-induced Photocatalysis (Springer, Cham, 2017), p. 19. https://doi.org/10.1007/978-3-319-62446-4_2

    Book  Google Scholar 

  8. W. Wang, B. Gu, L. Liang, W. A. Hamilton, D. J. Wesolowski, J. Phys. Chem. B 108, 14789 (2004). https://doi.org/10.1021/jp0470952

    Article  CAS  Google Scholar 

  9. V. A. Lebedev, Candidate’s Dissertation in Chemistry (Moscow State Univ., Moscow, 2017).

  10. G. Cacciato, M. Zimbone, F. Ruffino, and M. G. Grimaldi, in Green Nanotechnology—Overview and Further Prospects (InTech, London, 2016), p. 87. https://doi.org/10.5772/62620

    Book  Google Scholar 

  11. E. Baranowska-Wojcik, D. Szwajgier, P. Oleszczuk, and A. Winiarska-Mieczan, Biol. Trace Elem. Res. 193, 118 (2019). https://doi.org/10.1007/s12011-019-01706-6

    Article  CAS  Google Scholar 

  12. N. S. Kozhevnikova, E. S. Ul’yanova, E. V. Shalaeva, D. A. Zamyatin, A. O. Bokunyaeva, A. A. Yushkov, V. Yu. Kolosov, L. Yu. Buldakova, M. Yu. Yanchenko, T. I. Gorbunova, M. G. Pervova, A. N. Enyashin, and A. S. Vorokh, Kinet. Catal. 60, 325 (2019). https://doi.org/10.1134/S002315841903008X

    Article  CAS  Google Scholar 

  13. X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007). https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  14. L. A. Dunyushkina, Introduction to Methods for Producing Film Electrolytes for Solid Oxide Fuel Cells (Inst. Vysokotemp. Elektrokhim. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2015) [in Russian].

    Google Scholar 

  15. S. G. Shymyrbek, MSc Thesis (Tomsk, 2018).

  16. D. B. Zolotukhin, V. A. Burdovitsin, A.V. Tyun’kov, Yu. G. Yushkov, E. M. Oks, D. A. Golosov, and S. M. Zavadskii, Usp. Prikl. Fiz., No. 5, 442 (2017).

  17. A. Niilisk, M. Moppel, M. Pars, I. Sildos, T. Jantson, T. Avarmaa, R. Jaaniso, and J. Aarik, Cent. Eur. J. Phys. 4, 105 (2006). https://doi.org/10.1007/s11534-005-0009-3

    Article  CAS  Google Scholar 

  18. C.-P. Lin, H. Chen, A. Nakaruk, P. Koshy, and C. C. Sorrell, Energy Proc. 34, 627 (2013). https://doi.org/10.1016/j.egypro.2013.06.794

    Article  CAS  Google Scholar 

  19. F. D. Hardcastle, J. Arkansas Acad. Sci. 65, 43 (2011). https://doi.org/10.54119/jaas.2011.6504

    Article  CAS  Google Scholar 

  20. S. Nikodemski, A. A. Dameron, J. D. Perkins, R. P. O’Hayre, D. S. Ginley, and J. J. Berry, Sci. Rep. 6, 32830 (2016). https://doi.org/10.1038/srep32830

    Article  CAS  Google Scholar 

  21. U. Balachandran and N. G. Eror, J. Solid State Chem. 42, 276 (1982). https://doi.org/10.1016/0022-4596(82)90006-8

    Article  CAS  Google Scholar 

  22. S. Mamedov, Mater. Res. Soc. Symp. Proc. 1806, 1 (2015). https://doi.org/10.1557/opl.2015.377

    Article  Google Scholar 

  23. M. N. Iliev, V. G. Hadjiev, and A. P. Litvinchuk, Vibr. Spectrosc. 64, 148 (2013). https://doi.org/10.1016/j.vibspec.2012.08.003

    Article  CAS  Google Scholar 

  24. V. Swamy, M. C. Muddle, and Q. Dai, App. Phys. Lett. 89, 163118 (2006). https://doi.org/10.1063/1.2364123

    Article  CAS  Google Scholar 

  25. K.-R. Zhu, M.-S. Zhang, Q. Chen, and Z. Yin, Phys. Lett. A 340, 220 (2005). https://doi.org/10.1016/j.physleta.2005.04.008

    Article  CAS  Google Scholar 

  26. P. G. Li, M. Lei, and W. H. Tang, Mater. Lett. 64, 161 (2010). https://doi.org/10.1016/j.matlet.2009.10.032

    Article  CAS  Google Scholar 

  27. X. Wei, G. Zhu, J. Fang, and J. Chen, Int. J. Photoenergy 18, 726872 (2013). https://doi.org/10.1155/2013/726872

    Article  CAS  Google Scholar 

  28. G. M. Kuz’micheva, Tonk. Khim. Tekhnol. 10 (6), 5 (2015).

    Google Scholar 

  29. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  30. H. A. Mahmoud, K. Narasimharao, T. T. Ali, and K. M. S. Khalil, Nanoscale Res. Lett. 13, 48 (2018). https://doi.org/10.1186/s11671-018-2465-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nezhdanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhdanov, A.V., Zhukov, A.O., Shestakov, D.V. et al. Effect of the Annealing Conditions on the Formation of a Nanocrystalline Phase in TiOx Films. J. Surf. Investig. 17, 1078–1082 (2023). https://doi.org/10.1134/S1027451023050294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050294

Keywords:

Navigation