Skip to main content
Log in

Thermal Stability of the Structure and Optical Properties of Nanostructured TIO2 Films

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

The structure and optical properties of titanium dioxide films have been studied during annealing from 100 to 400°C. The films were obtained by ion-plasma high-frequency magnetron sputtering of polycrystalline rutile target in an argon atmosphere. It was shown that as-prepared TiO2 films are nanostructured with ~8 nm rutile crystallites and ~3.3 Å interplanar distances and contain a small fraction of anatase. The optical band gap of the films is 3.01 eV, and the refractive index under normal conditions is 2.25. The film annealing at tamperatures from 100 to 400°C does not practically change their structure, optical band gap, and refractive index under normal conditions, i.e., the obtained nanostructured TiO2 films are thermally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Diebold, Surf. Sci. Rep., 48, 53–229 (2003).

    Article  ADS  Google Scholar 

  2. V. M. Kalygina, V. A. Novikov, Yu. S. Petrov, et al., Fiz. Tekh. Poluprovodn., 48, No. 7, 989–994 (2014).

    Google Scholar 

  3. R. S. Singh, V. K. Rangari, S. Sanagapalli, et al., Sol. Energy Mater. Sol. Cells, 82, 315–330 (2004).

    Article  Google Scholar 

  4. K. Ernst, A. Belaidi, and R. Konenkamp, Semicond. Sci. Technol., 18, 475–479 (2003).

    Article  ADS  Google Scholar 

  5. M. Barrera, J. Pla, C. Bocchi, and A. Migliori, Sol. Energy Mater. Sol. Cells, 92, 1115–1122 (2008).

    Article  Google Scholar 

  6. A. E. Komlev, A. E. Lapshin, O. V. Magdysyuk, et al., Pis’ma Zh. Tekh. Fiz., 36, No. 20, 29–34 (2010).

    Google Scholar 

  7. Sh. Sun, P. Song, J. Cui, and Sh. Liang, Catal. Sci. Technol., No. 9, 4198 (2019).

  8. A. Gajovic and M. Stubicar, J. Mol. Struct., 563–564, 315–320 (2001).

    Article  ADS  Google Scholar 

  9. J. Zhang, M. Li, Zh. Feng, et al., J. Phys. Chem. B, 110, 927–935 (2006).

    Article  Google Scholar 

  10. A. Orendorz, A. Brodyanski, J. Losch, et al., Surf. Sci., 601, 4390–4394 (2007).

    Article  ADS  Google Scholar 

  11. D. W. Kim, N. Enomoto, Z. Nakagawa, and K. Kawamura, J. Am. Ceram. Soc., 79, 1095–1099 (1996).

    Article  Google Scholar 

  12. R. J. Swope, J. R. Smyth, and A. C. Larson, Am. Mineral., 80, 448–453 (1995).

    Article  ADS  Google Scholar 

  13. R. Jenkins and R. L. Snyder, Introduction to X-Ray Powder Diffractometry. Ser. Chemical Analysis. Vol. 138. Wiley, New York (1996).

  14. H. P. Myers, Introductory Solid State Physics, Taylor & Francis, London (2014).

    Google Scholar 

  15. J. Tayes, J. Non-Cryst. Sol., 15, No. 1, 627–630 (1966).

    Google Scholar 

  16. S. Ilican, M. Caglar, and Y. Caglar, Mater. Science-Poland, 25, No. 3, 709–718 (2007).

    Google Scholar 

  17. V. V. Brus, D. Kovalyuk, and P. D. Maryanchuk, Zh. Tekh. Fiz., 82, No. 8, 110–113 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Mikhailova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 3–8, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, S.L., Prikhodko, O.Y., Mukhametkarimov, Y.S. et al. Thermal Stability of the Structure and Optical Properties of Nanostructured TIO2 Films. Russ Phys J 63, 2045–2051 (2021). https://doi.org/10.1007/s11182-021-02272-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02272-y

Keywords

Navigation