Skip to main content
Log in

Hyperdynamics Simulation of the Diffusion of a Vacancy in a Crystal

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The diffusion of a vacancy in a deformed aluminum crystal is simulated by the methods of hyperdynamics and classical molecular dynamics. The method used to construct the bias potential for the hyperdynamic method was previously developed for the example of two-dimensional systems using pair potentials. The results indicate the possibility of applying the considered bias potential for the simulation of realistic three-dimensional systems through the use of many-body potentials. The dependences of acceleration of the simulation by the hyperdynamics method in comparison with molecular dynamics on temperature and the bias value of the potential are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. F. Voter, J. Chem. Phys. 106 (11), 4665 (1997).

    Article  CAS  Google Scholar 

  2. M. R. Sorensen and A. F. Voter, J. Chem. Phys. 112 (21), 9599 (2000).

    Article  CAS  Google Scholar 

  3. A. F. Voter, Phys. Rev. B 57 (22), 985 (1998).

    Article  Google Scholar 

  4. F. Montalenti and A. F. Voter, Phys. Status Solidi B 226 (1), 21 (2001).

    Article  CAS  Google Scholar 

  5. S. Chakraborty, J. Zhang, and S. Ghost, Comput. Mater. Sci. 121, 23 (2016).

    Article  CAS  Google Scholar 

  6. Y. Miao, F. Feixas, C. Eun, and J. A. McCammon, J. Comput. Chem. 36 (20), 1536 (2015).

    Article  CAS  Google Scholar 

  7. O. J. Andersen, M. W. Risor, E. C. Poulsen, et al., Biochemistry 56 (4), 634 (2017).

    Article  CAS  Google Scholar 

  8. S. Y. Kim, D. Perez, and A. F. Voter, J. Chem. Phys. 139, 144110 (2013).

    Article  Google Scholar 

  9. K. A. Fichthorn and S. Mubin, Comput. Mater. Sci. 100, 104 (2015).

    Article  Google Scholar 

  10. H. Hirau, J. Chem. Phys. 141 (23), 234109 (2014).

    Article  Google Scholar 

  11. E. V. Duda and G. V. Kornich, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 762 (2017).

    Article  CAS  Google Scholar 

  12. E. V. Duda and G. V. Kornich, Phys. Solid State 59, 1900 (2017).

    Article  CAS  Google Scholar 

  13. V. Vitek, G. J. Ackland, and J. Cserti, Mat. Res. Soc. Symp. Proc. 186, 237 (1991).

    Article  CAS  Google Scholar 

  14. H. J. Berendsen, J. P. M. Postma, W. F. V. Gunsteren, et al., J. Chem. Phys. 81 (8), 3684 (1984).

    Article  CAS  Google Scholar 

  15. G. V. Kornich, G. Betz, A. I. Bazhin, Nucl. Instrum. Methods. Phys. Res. B. 153, 383 (1999).

  16. G. V. Kornich, G. Betz, A. I. Bazhin, Nucl. Instrum. Methods. Phys. Res. B. 152, 437 (1999).

  17. L. N. Bol’shev and N. V. Smirnov, Tables for Mathematical Statistics (Vych. Tsentr Akad. Nauk SSSR, Moscow, 1968) [in Russian].

    Google Scholar 

  18. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., Otkrytye Sistemy, No. 7, 36 (2012).

Download references

ACKNOWLEDGMENTS

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [18].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kornich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duda, E.V., Kornich, G.V. Hyperdynamics Simulation of the Diffusion of a Vacancy in a Crystal. J. Surf. Investig. 14, 1205–1207 (2020). https://doi.org/10.1134/S1027451020050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020050043

Keywords:

Navigation