Skip to main content
Log in

Molecular Dynamics Simulation of Liquid Thallium

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The EAM potential for liquid thallium was proposed based on the experimental data for the pair correlation function, density, energy, and compressibility at 588 K. The properties of thallium models on the binodal were calculated to temperatures of 3000 K. Good agreement with experiment was obtained for density (to 1200 K), energy (to 3000 K), self-diffusion and viscosity coefficients (to 800 K), and with the existing pair correlation functions (to 973 K). The parameters of the EAM potential that are responsible for highly compressed states were calculated from the form of the shock adiabat of thallium: neglecting the electronic contributions to energy and pressure (EAM-1) and including these contributions using the free electron model (EAM-2). Two corresponding series of models were constructed under shock compression conditions to a pressure of 159 GPa. Inclusion of the electronic contributions lowers the temperature on the shock adiabat at Z = 1.8 by ∼23%. The cold pressure isotherms (at 298 K) calculated with both potentials are in good agreement with each other and with the isotherm of the real static compression of thallium to pressures of 137 GPa. For thallium nanoclusters with sizes from 13 to 5083 atoms, the excess surface energy was calculated, which is lower in the macroscopic limit by 15–20% than the surface tension of real thallium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. W. Schommers, Phys. Lett. A 43, 157 (1973).

    Article  CAS  Google Scholar 

  2. D. K. Belashchenko, Liquid Metals. From Interparticle Potentials to the Properties, Shock Compression, Earth’s Core, and Nanoclusters (Nova Science, New York, 2018).

    Google Scholar 

  3. D. K. Belashchenko, Phys. Usp. 56, 1176 (2013).

    Article  CAS  Google Scholar 

  4. G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 305 (2012).

    Article  Google Scholar 

  5. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  6. M. I. Baskes, S. P. Chen, and F. J. Cherne, Phys. Rev. B 66, 104107 (2002).

  7. M. J. Assael, I. J. Armyra, J. Brillo, et al., J. Phys. Chem. Ref. Data 41, 033101 (2012).

  8. www.webelements.com.

  9. Thermodynamical Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1981), Vol. 3 [in Russian].

    Google Scholar 

  10. M. B. Gitis and I. G. Mikhailov, Sov. Phys. Acoust. 12, 14 (1966).

    Google Scholar 

  11. P. N. V’yugov and V. S. Gumenyuk, Ukr. Fiz. Zh. 11, 440 (1966).

    Google Scholar 

  12. A. R. Regel’ and V. M. Glazov, Physical Properties of Electronic Melts (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  13. M. Hino, T. Ejima, and M. Kameda, J. Jpn. Inst. Met. 33, 617 (1969).

    Article  CAS  Google Scholar 

  14. B. M. Lepinskikh, A. A. Belousov, S. G. Bakhvalov, et al., Transport Properties of Metal and Slag Melts, Reference Book, Ed. by N. A. Vatolin (Metallurgiya, Moscow, 1995) [in Russian].

    Google Scholar 

  15. J. A. Cahill and A. V. Grosse, J. Phys. Chem. 69, 518 (1965).

    Article  CAS  Google Scholar 

  16. Y. Waseda, The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  17. J. Hafner, J. Non-Cryst. Solids 117–118, 18 (1990).

    Article  Google Scholar 

  18. D. K. Belashchenko and O. I. Ostrovskii, Russ. J. Phys. Chem. A 80, 509 (2006).

    Article  CAS  Google Scholar 

  19. D. K. Belashchenko, High Temp. 44, 675 (2006).

    Article  CAS  Google Scholar 

  20. D. K. Belashchenko, Russ. J. Phys. Chem. A 95, 2375 (2021).

  21. E. Yu. Tonkov and E. G. Ponyatovsky, Phase Transformations of Elements under High Pressure (CRC, Boca Raton, FL, 2005).

    Google Scholar 

  22. D. K. Belashchenko, Phys. Usp. 63, 1161 (2020).

    Article  CAS  Google Scholar 

  23. D. K. Belashchenko, Metally, No. 3, 136 (1989);

  24. Metally, No. 1, 166 (1990).

  25. D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (MISIS, Moscow, 2005) [in Russian].

    Google Scholar 

  26. P. J. Daivis and D. J. Evans, J. Chem. Phys. 100, 541 (1994).

    Article  CAS  Google Scholar 

  27. S. H. Lee and T. Chang, Bull. Korean Chem. Soc. 24, 1590 (2003).

    Article  CAS  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

  29. J. M. Walsh, M. H. Rice, R. G. McQueen, and F. L. Yarger, Phys. Rev. 108, 196 (1957).

    Article  CAS  Google Scholar 

  30. R. G. McQueen and S. P. Marsh, J. Appl. Phys. 31, 1253 (1960).

    Article  CAS  Google Scholar 

  31. S. P. Marsh, LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980).

  32. http://www.ihed.ras.ru/rusbank/.

  33. K. Kotmoola, B. Lic, S. Chakraborty, et al., Proc. Natl. Acad. Sci. U. S. A. 113, 11143 (2016).

    Article  Google Scholar 

  34. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (GITTL, Moscow, 1951; Pergamon, Oxford, 1980).

  35. N. Ozaki, K. A. Tanaka, T. Ono, et al., Phys. Plasmas 11, 1600 (2004).

    Article  CAS  Google Scholar 

  36. M. Koenig, E. Henry, G. Huser, et al., Nucl. Fusion 44, S208 (2004).

    Article  CAS  Google Scholar 

  37. Z. Qiao, L. Yan, Z. Cao, and Y. Xie, J. Alloys Compd. 325, 180 (2001).

    Article  CAS  Google Scholar 

  38. B. Medasani, Y. H. Park, and I. Vasiliev, Phys. Rev. B 75, 235436 (2007).

  39. S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, et al., J. Chem. Phys. 81, 530 (1984).

    Article  CAS  Google Scholar 

  40. D. K. Belashchenko, Russ. J. Phys. Chem. A 89, 516 (2015).

    Article  CAS  Google Scholar 

  41. J. R. Vella, F. H. Stillinger, A. Z. Panagiotopoulos, et al., J. Phys. Chem. B 119, 8960 (2015).

    Article  CAS  Google Scholar 

  42. J. R. Vella, F. H. Stillinger, A. Z. Panagiotopoulos, et al., Phys. Rev. B 95, 064202 (2017).

  43. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  44. Techniques de l’Ingeneur, Traite Constantes physico-chimiques. Influence de temperature sur la tension superficielle, K 476-2.

  45. O. A. Timofeevicheva and V. B. Lazarev, Dokl. Akad. Nauk SSSR 138, 412 (1961).

    CAS  Google Scholar 

  46. O. G. Ashkhotov and I. B. Ashkhotova, Russ. J. Phys. Chem. A 93, 2137 (2019).

    Article  CAS  Google Scholar 

  47. D. K. Belashchenko, Russ. J. Phys. Chem. A 93, 1093 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belashchenko, D.K. Molecular Dynamics Simulation of Liquid Thallium. Russ. J. Phys. Chem. 96, 572–583 (2022). https://doi.org/10.1134/S0036024422030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422030074

Keywords:

Navigation