Skip to main content
Log in

Motion of Fractal-Like Aggregates: Particle Settling Velocity and Thermophoresis

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A theoretical approach to calculation of the parameters of fractal-like aggregates based on gas-kinetic results for homogeneous spheres is presented. The essence of the approach consists in the replacement of a real fractal aggregate by a sphere equivalent in mobility and approximation of the aggregate density and thermal conductivity by their effective values. The effectiveness of the approach has been confirmed in comparison with known experimental data. It has two important restrictions: a fractal aggregate should consist of a great number of primary particles (100 and more), and primary particles should be monodisperse. Violation of these conditions leads to considerable divergence between theoretical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. A. Beresnev, M. S. Vasil’eva, V. I. Gryazin, and L. B. Kochneva, “Photophoresis of fractal-like soot aggregates: Microphysical model, comparison with experiment, and possible atmospheric manifestations,” Atmos. Oceanic Opt. 30 (6), 527–532 (2017).

    Article  Google Scholar 

  2. S. A. Beresnev, V. G. Chernyak, and G. A. Fomyagin, “Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization,” J. Fluid Mech. 219, 405–421 (1990).

    Article  ADS  Google Scholar 

  3. S. Beresnev and V. Chernyak, “Thermophoresis of a spherical particle in a rarefied gas: numerical analysis based on the model kinetic equations,” Phys. Fluids 7 (7), 1743–1756 (1995).

    Article  ADS  Google Scholar 

  4. C. M. Sorensen, “The mobility of fractal aggregates: A review,” Aerosol Sci. Technol. 45, 765–779 (2011).

    Article  ADS  Google Scholar 

  5. M. D. Allen and O. G. Raabe, “Slip correction measurements of spherical solid aerosol particles in unimproved Millikan apparatus,” Aerosol Sci. Technol. 4, 269–286 (1985).

    Article  ADS  Google Scholar 

  6. J. Yon, A. Bescond, and F.-X. Ouf, “A simple semi-empirical model for effective density measurements of fractal aggregates,” J. Aerosol Sci. 87, 28–37 (2015).

    Article  ADS  Google Scholar 

  7. C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81 (10), 6692–6699 (1997).

    Article  ADS  Google Scholar 

  8. W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” Int. J. Heat Mass Transfer 51, 1431–1438 (2008).

    Article  Google Scholar 

  9. S. Suzuki and R. Dobashi, “Effect of particle morphology on the thermophoretic behavior of soot particle,” in 20th Int. Colloq. Dyn. Expl. React. Syst. (ICDERS2005) (Montreal, 2005). p. 205-1–4.

  10. S. Suzuki, K. Kawana, and R. Dobashi, “Effect of particle morphology on thermophoretic velocity of aggregated soot particles,” Int. J. Heat Mass Transfer 52, 4695–4700 (2009).

    Article  Google Scholar 

  11. P. A. Baron and K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications (Wiley-Interscience, New York, 2001), p. 1172.

    Google Scholar 

  12. V. V. Karasev, A. A. Onischuk, O. G. Glotov, A. M. Baklanov, E. A. Pilyugina, A. B. Kiskin, and V. E. Zarko, “Formation of titania nanoparticles via combustion of the pyrotechnic mixture,” in Proc. 35th Int. Ann. Conf. of ICT (Karlsruhe, 2004).

  13. A. Messerer, R. Niessner, and U. Poschl, “Thermophoretic deposition of soot aerosol particles under experimental conditions relevant for modern diesel engine exhaust gas systems,” J. Aerosol Sci. 34, 1009–1021 (2003).

    Article  ADS  Google Scholar 

  14. E. Brugiere, F. Gensdarmes, F. X. Ouf, J. Yon, and A. Coppalle, “Increase in thermophoretic velocity of carbon aggregates as a function of particle size,” J. Aerosol Sci. 76, 87–97 (2014).

    Article  ADS  Google Scholar 

  15. L. A. A. Yahia, E. Gehin, and B. Sagot, “Application of the thermophoretic annular precipitator (trap) for the study of soot aggregates morphological influence on their thermophoretic behavior,” J. Aerosol Sci. 113, 40–51 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

The work was performed within the State Assignment for Institutions of Higher Education, Russian Ministry of Education and Science (project no. 6064.2017/8.9) and with financial support of the Government of the Russian Federation (Contract no. 211, Agreement no. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Beresnev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beresnev, S.A., Vasiljeva, M.S. & Kochneva, L.B. Motion of Fractal-Like Aggregates: Particle Settling Velocity and Thermophoresis. Atmos Ocean Opt 32, 528–533 (2019). https://doi.org/10.1134/S102485601905004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601905004X

Keywords:

Navigation