Atmospheric and Oceanic Optics

, Volume 32, Issue 5, pp 528–533 | Cite as

Motion of Fractal-Like Aggregates: Particle Settling Velocity and Thermophoresis

  • S. A. BeresnevEmail author
  • M. S. Vasiljeva
  • L. B. Kochneva


A theoretical approach to calculation of the parameters of fractal-like aggregates based on gas-kinetic results for homogeneous spheres is presented. The essence of the approach consists in the replacement of a real fractal aggregate by a sphere equivalent in mobility and approximation of the aggregate density and thermal conductivity by their effective values. The effectiveness of the approach has been confirmed in comparison with known experimental data. It has two important restrictions: a fractal aggregate should consist of a great number of primary particles (100 and more), and primary particles should be monodisperse. Violation of these conditions leads to considerable divergence between theoretical and experimental results.


settling velocity thermophoresis fractal-like particles 



The work was performed within the State Assignment for Institutions of Higher Education, Russian Ministry of Education and Science (project no. 6064.2017/8.9) and with financial support of the Government of the Russian Federation (Contract no. 211, Agreement no. 02.A03.21.0006).


The authors declare that they have no conflicts of interest.


  1. 1.
    S. A. Beresnev, M. S. Vasil’eva, V. I. Gryazin, and L. B. Kochneva, “Photophoresis of fractal-like soot aggregates: Microphysical model, comparison with experiment, and possible atmospheric manifestations,” Atmos. Oceanic Opt. 30 (6), 527–532 (2017).CrossRefGoogle Scholar
  2. 2.
    S. A. Beresnev, V. G. Chernyak, and G. A. Fomyagin, “Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization,” J. Fluid Mech. 219, 405–421 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    S. Beresnev and V. Chernyak, “Thermophoresis of a spherical particle in a rarefied gas: numerical analysis based on the model kinetic equations,” Phys. Fluids 7 (7), 1743–1756 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    C. M. Sorensen, “The mobility of fractal aggregates: A review,” Aerosol Sci. Technol. 45, 765–779 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    M. D. Allen and O. G. Raabe, “Slip correction measurements of spherical solid aerosol particles in unimproved Millikan apparatus,” Aerosol Sci. Technol. 4, 269–286 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    J. Yon, A. Bescond, and F.-X. Ouf, “A simple semi-empirical model for effective density measurements of fractal aggregates,” J. Aerosol Sci. 87, 28–37 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81 (10), 6692–6699 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” Int. J. Heat Mass Transfer 51, 1431–1438 (2008).CrossRefGoogle Scholar
  9. 9.
    S. Suzuki and R. Dobashi, “Effect of particle morphology on the thermophoretic behavior of soot particle,” in 20th Int. Colloq. Dyn. Expl. React. Syst. (ICDERS2005) (Montreal, 2005). p. 205-1–4.Google Scholar
  10. 10.
    S. Suzuki, K. Kawana, and R. Dobashi, “Effect of particle morphology on thermophoretic velocity of aggregated soot particles,” Int. J. Heat Mass Transfer 52, 4695–4700 (2009).CrossRefGoogle Scholar
  11. 11.
    P. A. Baron and K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications (Wiley-Interscience, New York, 2001), p. 1172.Google Scholar
  12. 12.
    V. V. Karasev, A. A. Onischuk, O. G. Glotov, A. M. Baklanov, E. A. Pilyugina, A. B. Kiskin, and V. E. Zarko, “Formation of titania nanoparticles via combustion of the pyrotechnic mixture,” in Proc. 35th Int. Ann. Conf. of ICT (Karlsruhe, 2004).Google Scholar
  13. 13.
    A. Messerer, R. Niessner, and U. Poschl, “Thermophoretic deposition of soot aerosol particles under experimental conditions relevant for modern diesel engine exhaust gas systems,” J. Aerosol Sci. 34, 1009–1021 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    E. Brugiere, F. Gensdarmes, F. X. Ouf, J. Yon, and A. Coppalle, “Increase in thermophoretic velocity of carbon aggregates as a function of particle size,” J. Aerosol Sci. 76, 87–97 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    L. A. A. Yahia, E. Gehin, and B. Sagot, “Application of the thermophoretic annular precipitator (trap) for the study of soot aggregates morphological influence on their thermophoretic behavior,” J. Aerosol Sci. 113, 40–51 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Beresnev
    • 1
    Email author
  • M. S. Vasiljeva
    • 1
  • L. B. Kochneva
    • 1
  1. 1.Institute of Natural Sciences and Mathematics, Boris Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations