Skip to main content
Log in

Calculating the Parameters of the Fractal Aggregates Formed in a Bidisperse Suspension

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The fractal properties of aggregates (clusters) formed in a bidisperse (two-phase) suspension through the attachment of fine particles to a coarse fraction, taking the dependency of the fractal dimension of the aggregate on its size into account, are studied. The correlation coupling parameters of the initial and limiting states of the suspension (for the complete aggregation of the primary particles) is obtained based on the balance of the number of particles. The influence of the key parameters of the suspension, as well as of the factor of variable fractal dimension on the typical characteristics of fractal clusters, is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smirnov, B.M., Fractal clusters, Sov. Phys.—Usp., 1986, vol. 29, no. 6, p. 481.

    Article  Google Scholar 

  2. Jullien, R., Fractal aggregates, Comments Condens. Matter Phys., 1987, vol. 13, no. 4, pp. 177–205.

    CAS  Google Scholar 

  3. Roldughin, V.I., Fractal structures in disperse systems, Russ. Chem. Rev., 2003, vol. 72, no. 10, p. 823.

    Article  CAS  Google Scholar 

  4. Roldughin, V.I., The characteristics of fractal disperse systems, Russ. Chem. Rev., 2003, vol. 72, no. 11, p. 913.

    Article  CAS  Google Scholar 

  5. Ur'ev, N.B. and Potanin, A.A., Tekuchest’ suspenzii i poroshkov (Fluidity of Suspensions and Powders), Moscow: Khimiya, 1992.

    Google Scholar 

  6. Ravichev, L.V., Bespalov, A.V., and Loginov, V.Ya., Mathematical simulation of the viscous properties of concentrated suspensions, Theor. Found. Chem. Eng., 2008, vol. 42, no. 3, pp. 314–323. doi 10.1134/S0040579508030123

    Article  CAS  Google Scholar 

  7. Draginskii, V.L., Alekseeva, L.P., and Getmantsev, S.V., Koagulyatsiya v tekhnologii ochistki prirodnykh vod (Coagulation in the Technology of Natural Water Purification), Moscow: Vseross. Nauchno-Issled. Inst. Mezhotrasl. Inf., 2005.

    Google Scholar 

  8. Feofanov, Yu.A. and Khirshieva, I.V., Results of studying the use of weighting agents for the intensification of coagulation processes, Vestn. Grazhdanskikh Inzh., 2013, no. 3, p. 129.

    Google Scholar 

  9. Amanbaev, T.R., Modeling of straitened sedimentation process in bidisperse suspension with interfractional coagulation, AIChE J., 2014, vol. 2, no. 2, p. 14.

    CAS  Google Scholar 

  10. Amanbaev, T.R., Effect of the fine-dispersed fraction on the motion of the large particle in the suspension, Theor. Found. Chem. Eng., 2015, vol. 49, no. 2, pp. 207–211. doi 10.1134/S0040579515020013

    Article  CAS  Google Scholar 

  11. Dolgonosov, B.M., Coagulation–fragmentation kinetics: Equilibrium weight distribution of aggregates in flowing suspensions, Theor. Found. Chem. Eng., 2001, vol. 35, no. 5, pp. 440–446. doi 10.1023/A:1012313701450

    Article  CAS  Google Scholar 

  12. Wildemuth, C.R. and Williams, M.C., Viscosity of suspensions modeled with a shear-dependent maximum packing fraction, Rheol. Acta, 1984, vol. 23, no. 6, p. 627.

    Article  CAS  Google Scholar 

  13. Gmachowski, L., Calculation of the fractal dimension of aggregates, Colloids Surf., A, 2002, vol. 211, no. 2, p. 197.

    Article  CAS  Google Scholar 

  14. Nigmatulin, R.I., Osnovy mekhaniki geterogennykh sred (Fundamentals of the Mechanics of Heterogeneous Media), Moscow: Nauka, 1978.

    Google Scholar 

  15. Gol'dshtik, M.A., Elementary theory of the boiling layer, J. Appl. Mech. Tech. Phys., 1972, vol. 13, no. 6, pp. 851–856. doi 10.1007/BF01200544

    Article  Google Scholar 

  16. Henry, F., Marchal, P., Bouillard, J., Vignes, A., Dufaud, O., and Perrin, L., The effect of agglomeration on the emission of particles from nanopowders flow, Chem. Eng. Trans., 2013, vol. 31, p. 811.

    Google Scholar 

  17. Risovic, D. and Martinis, M., Fractal dimensions of suspended particles in seawater, J. Colloid Interface Sci., 1996, vol. 182, no. 1, p. 199.

    Article  CAS  Google Scholar 

  18. Khelifa, A. and Hill, P.S., Models for effective density and settling velocity of flocs, J. Hydraul. Res., 2006, vol. 44, no. 3, pp. 390–401. doi 10.1080/00221686.2006.9521690

    Article  Google Scholar 

  19. Maggi, F., Variable fractal dimension: A major control for floc structure and flocculation kinematics of suspended cohesive sediment, J. Geophys. Res.: Oceans, 2007, vol. 112, no. C7, article C07012.

  20. Maggi, F., The settling velocity of mineral, biomineral, and biological particles and aggregates in water, J. Geophys. Res.: Oceans, 2013, vol. 118, no. 4, p. 2118.

    Article  Google Scholar 

  21. Amosov, A.A., Dubinskii, Yu.A., and Kopchenova, N.V., Vychislitel’nye metody dlya inzhenerov (Computational Methods for Engineers), Moscow: Vysshaya Shkola, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Amanbaev.

Additional information

Original Russian Text © T.R. Amanbaev, 2018, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2018, Vol. 52, No. 5, pp. 583–590.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanbaev, T.R. Calculating the Parameters of the Fractal Aggregates Formed in a Bidisperse Suspension. Theor Found Chem Eng 52, 846–852 (2018). https://doi.org/10.1134/S0040579518040358

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579518040358

Keywords

Navigation