Skip to main content
Log in

On the Size Distribution of Dispersed Fractal Particles

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Using a thermodynamic approach, a disperse system formed by an ensemble of particles with various shapes and volumes is studied. The shape of a particle is set by the value of its fractal dimension, which characterizes the relationship between the volume and surface area. Using the methods of number theory and the Hardy–Ramanujan–Rademacher formula, the size distribution functions of the dispersed phase of particles with various shapes in the ensemble corresponding to the state of thermodynamic equilibrium are constructed. Based on the distribution functions, estimates of the mean size and fractal dimension of dispersed particles are obtained. The relationships between the average geometric characteristics of particles in the ensemble, the thermodynamic conditions in which the disperse system is located, and the properties of the substance forming it are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. A. Nepiyko, Physical Properties of Small Metallic Particles (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  2. M. N. Magomedov, Tech. Phys. 60 (6), 937 (2015). https://doi.org/10.1134/S106378421506016X

    Article  Google Scholar 

  3. M. N. Magomedov, Phys. Solid State 61 (1), 23 (2019). https://doi.org/10.1134/S1063783419010165

    Article  ADS  Google Scholar 

  4. V. N. Nikiforov, A. N. Ignatenko, and V. Yu. Irkhin, J. Exp. Theor. Phys. 124 (2), 304 (2017). https://doi.org/10.1134/S1063776117010046

    Article  ADS  Google Scholar 

  5. S. V. Stolyar, S. V. Komogortsev, L. A. Chekanova, R. N. Yaroslavtsev, O. A. Bayukov, D. A. Velikanov, M. N. Volochaev, E. V. Cheremiskina, M. Sh. Bairmani, P. E. Eroshenko, and R. S. Iskhakov, Tech. Phys. Lett. 45 (9), 878 (2019). https://doi.org/10.1134/S1063785019090116

    Article  ADS  Google Scholar 

  6. A. V. Shishulin, V. B. Fedoseev, and A. V. Shishulina, Tech. Phys. 64 (9), 1343 (2019). https://doi.org/10.1134/S1063784219090172

    Article  Google Scholar 

  7. C. C. Yang and Q. Jiang, Acta Mater. 53 (11), 3305 (2005). https://doi.org/10.1016/j.actamat.2005.03.039

    Article  ADS  Google Scholar 

  8. M. N. Magomedov, Phys. Solid State 61 (4), 642 (2019). https://doi.org/10.1134/S106378341904019X

    Article  ADS  Google Scholar 

  9. A. V. Kalinkin, A. M. Sorokin, M. Yu. Smirnov, and V. I. Bukhtiyarov, Kinet. Catal. 55 (3), 354 (2014). https://doi.org/10.1134/S0023158414030045

    Article  Google Scholar 

  10. M. K. Berner, V. E. Zarko, and M. B. Talawar, Combust., Explos. Shock Waves 49 (6), 625 (2013). https://doi.org/10.1134/S0010508213060014

    Article  Google Scholar 

  11. R. Mendoza-Pérez and G. Guisbiers, Nanotechnology 30 (30), 305702 (2019). https://doi.org/10.1088/1361-6528/ab1759

    Article  Google Scholar 

  12. A. Shirinyan, G. Wilde, and Yu. Bilogorodskyy, J. Mater. Sci. 55, 12385 (2020). https://doi.org/10.1007/s10853-020-04812-2

    Article  ADS  Google Scholar 

  13. A. V. Shishulin, V. B. Fedoseev, and A. V. Shishulina, Tech. Phys. 64 (4), 512 (2019). https://doi.org/10.1134/S1063784219040200

    Article  Google Scholar 

  14. L.-D. Geoffrion and G. Guisbiers, J. Phys. Chem. C 124 (25), 14061 (2020). https://doi.org/10.1021/acs.jpcc.0c04356

    Article  Google Scholar 

  15. E. N. Fedoseeva and V. B. Fedoseev, Tech. Phys. 65 (6), 839 (2020). https://doi.org/10.1134/S1063784220060110

    Article  Google Scholar 

  16. B. Straumal, B. Baretzky, A. Mazilkin, S. Protasova, A. Myatiev, and P. Straumal, J. Eur. Ceram. Soc. 29 (10), 1963 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.005

    Article  Google Scholar 

  17. G. Radnóczi, E. Bokányi, Z. Erdélyi, and F. Misják, Acta Mater. 123, 82 (2017). https://doi.org/10.1016/j.actamat.2016.10.036

    Article  ADS  Google Scholar 

  18. Y. Magnin, A. Zappelli, H. Amara, F. Ducastelle, and C. Bichara, Phys. Rev. Lett. 115, 205502 (2015). https://doi.org/10.1103/physrevlett.115.205502

    Article  ADS  Google Scholar 

  19. M. N. Magomedov, Tech. Phys. 61 (5), 722 (2016). https://doi.org/10.1134/S1063784216050145

    Article  Google Scholar 

  20. M. N. Magomedov, in Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, Ed. by V. M. Samsonov and N. Yu. Sdobnyakov (Tver. Gos. Univ., Tver, 2013), p. 169 [in Russian].

    Google Scholar 

  21. A. V. Shishulin and V. B. Fedoseev, Kinet. Catal. 60 (3), 315 (2019). https://doi.org/10.1134/S0023158419030121

    Article  Google Scholar 

  22. O. A. Golovanova, E. S. Chikanova, and V. B. Fedoseev, Crystallogr. Rep. 63 (3), 493 (2018). https://doi.org/10.7868/S0023476118030190

    Article  ADS  Google Scholar 

  23. V. B. Fedoseev and E. N. Fedoseeva, J. Eng. Phys. Thermophys. 92 (5), 1191 (2019). https://doi.org/10.1007/s10891-019-02033-2

    Article  Google Scholar 

  24. V. B. Fedoseev, Butlerov Commun. 23 (14), 36 (2010).

    Google Scholar 

  25. G. E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, Mass., 1976).

    MATH  Google Scholar 

  26. G. H. Hardy and S. Ramanujan, Proc. London Math. Soc. 17 (2), 75 (1918).

    Article  MathSciNet  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon, London, 1959).

  28. A. V. Shishulin and V. B. Fedoseev, J. Mol. Liq. 278, 363 (2019). https://doi.org/10.1016/j.molliq.2019.01.050

    Article  Google Scholar 

  29. M. Cui, H. Lu, H. Jiang, Z. Cao, and X. Meng, Sci. Rep. 7, 41990 (2017). https://doi.org/10.1038/srep41990

    Article  ADS  Google Scholar 

  30. B. R. Cuenya, Thin Solid Films 518 (12), 2127 (2010). https://doi.org/10.1016/j.tsf.2010.01.018

    Article  Google Scholar 

  31. J. P. Polomares-Báez, J. M. Montejano-Carrizalez, G. Guisbiers, M. José-Yacamán, and J. L. Rodríguez-López, Nanotechnology 30 (42), 425791 (2019). https://doi.org/10.1088/1361-6528/ab27eb

    Article  Google Scholar 

  32. J. J. Velázquez-Salazar, L. Bazán-Díaz, Q. Zhang, R. Mendoza-Cruz, L. Montaño-Priede, G. Guisbiers, N. Large, S. Link, and M. José-Yacamán, ACS Nano 13 (9), 10113 (2019). https://doi.org/10.1021/acsnano.9b03084

    Article  Google Scholar 

  33. F.-X. Niu, Y.-X. Wang, L.-R. Ma, S.-L. Fu, I. Abbas, C. Qu, and C.-G. Wang, J. Alloys Compd. 714, 270 (2017). https://doi.org/10.1016/j.jallcom.2017.04.186

  34. V. M. Samsonov, D. E. Demenkov, V. I. Karacharov, and A. G. Bembel, Bull. Russ. Acad. Sci.: Phys. 75 (8), 1073 (2011). https://doi.org/10.3103/S106287381108034X

    Article  Google Scholar 

  35. V. M. Samsonov, A. A. Chernyshova, and N. Yu. Sdobnyakov, Bull. Russ. Acad. Sci.: Phys. 80 (6), 698 (2016). https://doi.org/10.3103/S1062873816060290

    Article  Google Scholar 

  36. M. Wautelet and D. Duvivier, Eur. J. Phys. 28 (5), 953 (2007). https://doi.org/10.1088/0143-0807/28/5/018

    Article  Google Scholar 

  37. G. Kaptay, J. Mater. Sci. 47, 8320 (2012). https://doi.org/10.1007/s10853-012-6772-9

    Article  ADS  Google Scholar 

  38. M. Monji and M. A. Jabbareh, Calphad 58, 1 (2017). https://doi.org/10.1016/j.calphad.2017.04.003

    Article  Google Scholar 

  39. X. He, W. Zhong, C.-T. Au, and Y. Du, Nanoscale Res. Lett. 8, 446 (2013). https://doi.org/10.1186/1556-276X-8-446

    Article  ADS  Google Scholar 

  40. M. Yu. Smirnov, A. V. Kalinkin, E. I. Vovk, and V. I. Bukhtiyarov, Kinet. Catal. 56 (6), 801 (2015). https://doi.org/10.1134/S0023158415060129

    Article  Google Scholar 

  41. V. V. Karasev, A. A. Onishchuk, S. A. Khromova, O. G. Glotov, V. E. Zarko, E. A. Pilyugina, and C. J. Tsai, Combust., Explos. Shock Waves 42 (6), 649 (2006). https://doi.org/10.1007/s10573-006-0098-3

    Article  Google Scholar 

  42. M. Khakbiz, F. Akhlaghi, P. S. Bagha, and L. Ghazanfari, Physica B 557, 132 (2019). https://doi.org/10.1016/j.physb.2018.12.033

    Article  ADS  Google Scholar 

  43. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, Acta Mater. 55, 6039 (2007). https://doi.org/10.1016/j.actamat.2007.04.017

    Article  ADS  Google Scholar 

  44. T. I. Chashchukhina, L. M. Voronova, and M. V. Degtyarev, Bull. Russ. Acad. Sci.: Phys. 71 (2), 275 (2007). https://doi.org/10.3103/S1062873807020335

    Article  Google Scholar 

  45. V. N. Chuvil’deev, A. V. Nokhrin, V. I. Kopylov, M. S. Boldin, M. M. Vostokov, M. Yu. Gryaznov, N. Yu. Tabachkova, and P. Tryaev, J. Mater. Sci. 54 (24), 14926 (2019). https://doi.org/10.1007/s10853-019-03926-6

    Article  ADS  Google Scholar 

  46. A. M. Agalarov, A. A. Potapov, A. E. Rassadin, and A. V. Stepanov, Model. Analiz Inform. Sistem 25 (1), 7 (2018). https://doi.org/10.18255/1818-1015-2018-1-7-17

    Article  Google Scholar 

  47. P. P. Fedorov and V. V. Osiko, Dokl. Phys. 64 (9), 353 (2019). https://doi.org/10.1134/S1028335819090076

    Article  ADS  Google Scholar 

  48. E. L. Nagaev, Sov. Phys.-Usp. 35 (9), 747 (1992). https://doi.org/10.1070/PU1992v035n09ABEH002261

    Article  ADS  Google Scholar 

  49. E. B. Dolgusheva and V. Yu. Trubitsin, Phys. Solid State 52 (6), 1238 (2010). https://doi.org/10.1134/S1063783410060193

    Article  ADS  Google Scholar 

  50. E. N. Fedoseeva and V. B. Fedoseev, Polym. Sci., Ser. A 53 (11), 1040 (2011). https://doi.org/10.1134/S0965545X1110004X

    Article  Google Scholar 

  51. V. Burlakov and A. Goriely, Europhys. Lett. 119 (5), 50001 (2017). https://doi.org/10.1209/0295-5075/119/50001

    Article  ADS  Google Scholar 

  52. O. I. Shelukhin and D. I. Magomedova, Naukoem. Tekhnol. Kosmos. Issled. Zemli 9 (6), 6 (2017).

    Google Scholar 

  53. J. Li, Q. Du, and C. Sun, Pattern Recognit. 42 (11), 2460 (2009). https://doi.org/10.1016/j.patcog.2009.03.001

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to two reviewers for their attention to this study and providing valuable comments.

Funding

The study was performed in accordance with a state order to the Institute of Organometallic Chemistry, Russian Academy of Sciences, and also supported by the Russian Foundation for Basic Research, project no. 18-08-01356-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shishulin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseev, V.B., Shishulin, A.V. On the Size Distribution of Dispersed Fractal Particles. Tech. Phys. 66, 34–40 (2021). https://doi.org/10.1134/S1063784221010072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221010072

Navigation