Advertisement

Atmospheric and Oceanic Optics

, Volume 26, Issue 2, pp 159–162 | Cite as

Measurements of the carbon dioxide concentration in silicon dioxide nanopores

  • B. G. Ageev
  • Yu. N. Ponomarev
Optical Instrumentation

Abstract

Measurement results on the concentration of carbon dioxide, adsorbed by nanopores of silicon dioxide, are presented. The measurements were conducted by the laser photoacoustic gas-analysis method. The magnitude found corresponds well to the concentration value found with the help of the standard vacuum technique.

Keywords

Tree Ring Silicon Dioxide Aerogel Exposure Chamber Aerogel Sample Laser Radia Tion Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Omi, T. Ueda, K. Miyakubo, and T. Eguchi, “Dynamics of CO2 Molecules Confined in the Micropores of Solids as Studied by 13C NMR,” Appl. Surface Sci. 252, 660–667 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    A. A. Lugovskoy, Yu. A. Poplavskii, V. I. Serdyukov, and L. N. Sinitsa, “Experimental Setup for Spectrophotometric Study of Water Clusters in Nanoporous Material,” Atmos. Ocean. Opt. 24(5), 502–507 (2011).CrossRefGoogle Scholar
  3. 3.
    V. Bernardet, A. Decrette, J. M. Simon, O. Bertrand, G. Weber, and J. P. Bellat, “Experimental and Simulated Infrared Spectroscopic Studies of the Interaction of Ethylene on a MFI Zeolite,” Mol. Phys. 102(16–17), 1859–1870 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, A. A. Solodov, and A. F. Danilyuk, “Experimental Study by the IR Spectroscopy Method of the Interaction between Ethylene and Nanopores of Various Densities,” Atmos. Ocean. Opt. 23(4), 266–269 (2010).CrossRefGoogle Scholar
  5. 5.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “The Study of Water Absorption Spectrum in Aerogel Nanopores”, in Proc. of the XVI Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (IOA SO RAN, Tomsk, 2009), pp. 97–99 [in Russian].Google Scholar
  6. 6.
    Yu. N. Kharzheev, “Use of Silica Aerogels in Cherenkov Counters,” Phys. Particles and Nuclei 39(1), 107–135 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    B. G. Ageev, Yu. N. Ponomarev, and V. A. Sapozhnikova, “A Trend of the CO2 Concentration in Tree Rings and the Atmospheric CO2,” Atmos. Ocean. Opt. 22(1), 128–134 (2009).CrossRefGoogle Scholar
  8. 8.
    B. G. Ageev, A. P. Zotikova, N. L. Padalko, Yu. N. Ponomarev, D. A. Savchuk, V. A. Sapozhnikova, and E. V. Chernikov, “Variation of H2O, CO2, and CO2 Isotope Composition in Tree Rings of Siberian Stone Pine,” Atmos. Ocean. Opt. 24(4), 390–395 (2011).CrossRefGoogle Scholar
  9. 9.
    I. V. Sherstov, K. V. Bychkov, V. A. Vasil’ev, A. I. Karapuzikov, V. V. Spitsyn, and S. B. Chernikov, “Two-Channel CO2 Laser System for Heterodyne Lidar,” Atmos. Ocean. Opt. 18(3), 248–254 (2005).Google Scholar
  10. 10.
    G. A. West, J. J. Barret, D. R. Siebert, and K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54(7), 797–817 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Zuev, A. A. Mitsel’, M. Yu. Kataev, I. V. Ptashnik, and K. M. Firsov, “Simulation of Gas Analysis of the Atmosphere by Long Path Method: Computer Code LPM,” Comput. Phys. 9(6), 649–656 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    O. K. Kostko, V. S. Portasov, V. U. Khattatov, and E. A. Chayanova, Use of Lasers for of Atmospheric Composition Measurements (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • B. G. Ageev
    • 1
  • Yu. N. Ponomarev
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations