Skip to main content
Log in

Spectroscopy for the Analysis of Nanoporous Silicon Gas and Humidity Sensors

  • TEMPMEKO 2016
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, a Raman spectroscopic study of nanoporous silicon sensor samples demonstrated its use as a method of gauging the sensor potential via quantitative data it provides on the sensor nanostructure dimensions. This special property of the Raman spectroscopy technique also showed its potential to determine mechanical stability of the samples over 3 months. This work also shows that the Raman spectroscopy technique is sensitive to step changes in relative humidity in all the sensor samples via its measurement of the strain-free crystalline silicon (c-Si) Raman peak. Since the Raman technique is non-destructive and senses remotely on the fragile nanoporous sensor samples it will be the ideal replacement of the presently used electrical capacitance techniques as the primary determination of relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Schechter, M. Ben-Corin, A. Kux, Anal. Chem. 67, 3727 (1995)

    Article  Google Scholar 

  2. L. Seals, J.L. Gole, L.A. Tse, P.J. Hesketh, J. Appl. Phys. 91, 2519 (2002)

    Article  ADS  Google Scholar 

  3. S.E. Lewis, J.R. DeBoer, J.L. Gole, P.J. Hesketh, Sens. Actuators B 110, 54 (2005)

    Article  Google Scholar 

  4. Z.M. Rittersma, A. Splinter, A. Bödecker, W. Benecke, Sens. Actuators B 68, 210 (2000)

    Article  Google Scholar 

  5. M. Björkqvist, J. Salonen, J. Paski, E. Laine, Sens. Actuators A 112, 244 (2004)

    Article  Google Scholar 

  6. G. Di Francia, A. Castaldo, E. Massera, I. Nasti, L. Quercia, I. Rea, Sens. Actuators B 111, 135 (2005)

    Article  Google Scholar 

  7. R.L. Smith, S.D. Collins, J. Appl. Phys. 71, R1 (1992)

    Article  ADS  Google Scholar 

  8. H. Föll, M. Christophersen, J. Carstensen, G. Hasse, Mater. Sci. Eng. R 39, 93 (2002)

    Article  Google Scholar 

  9. X.G. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer Academic Publishers, New York, 2001)

    Google Scholar 

  10. O. Bisi, S. Ossicini, L. Pavesi, Surf. Sci. Rep. 38, 1 (2000)

    Article  ADS  Google Scholar 

  11. V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials, and Applications (Wiley-VCH, Weinheim, 2002)

    Book  Google Scholar 

  12. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  13. C.P. Poole, F.J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003), pp. 150–153

    Google Scholar 

  14. A.G. Cullis, L.T. Canham, Nature 353, 335 (1991)

    Article  ADS  Google Scholar 

  15. K.M. Omar, N.K. Ali, Z. Hassan, M.R. Hashim, H.A. Hassan, J. Optoelectron. Adv. Mater. 10–10, 2653 (2008)

    Google Scholar 

  16. A.S. Nikolenko, Semicond. Phys. Quantum Electron. Optoelectron. 16–1, 86 (2013)

    Article  Google Scholar 

  17. D.A. Schaeffer, Fabrication and Characterization of Si(1 − x)Ge(x) Semiconductor Alloy for Sensor Applications. Master’s Thesis, University of Tennessee, 2013

  18. M. Šćepanović, M. Grujić-Brojčin, Z. Dohčević-Mitrović, Z.V. Popović, J. Phys. Conf. Ser. 253-1, 012015 (2010)

    Article  Google Scholar 

  19. N.A. Asli, S.F.M. Yusop, M. Rusop, S. Abdullah, AIP Conf. Proc. 1341, 96 (2011)

    Article  ADS  Google Scholar 

  20. J.F. Morhange, G. Kanellis, M. Balkanski, Solid State Commun. 31, 805 (1979)

    Article  ADS  Google Scholar 

  21. J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, X. Xie, Appl. Phys. Lett. 69, 200 (1996)

    Article  ADS  Google Scholar 

  22. F. Agullo-Rueda, J.D. Moreno, E. Montoya, R. Guerrero-Lemus, J.M. Martinez-Duart, J. Appl. Phys. 84, 2349 (1998)

    Article  ADS  Google Scholar 

  23. G. Faraci, S. Gibilisco, P. Russo, R. Penisi, Phys. Rev. B 73, 033307-1 (2006)

    Article  ADS  Google Scholar 

  24. S.K. Gupta, P.K. Jha, Solid State Commun. 149, 1989 (2009)

    Article  ADS  Google Scholar 

  25. B.K. Patel, R. Mythili, R. Vijayalaxmi, R.K. Soni, S.N. Behera, S.N. Sahu, Phys. B 322, 146 (2002)

    Article  ADS  Google Scholar 

  26. Y. Kang, Y. Qiu, Z. Lei, M. Hu, Opt. Laser Eng. 43, 847 (2005)

    Article  Google Scholar 

  27. D. Chakravarty, B.V. Sarada, S.B. Chandrasekhar, K. Saravanan, T.N. Rao, Mater. Sci. Eng. A 528, 7831 (2011)

    Article  Google Scholar 

  28. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)

    Article  ADS  Google Scholar 

  29. I.H. Campbell, P.M. Fauchet, Solid State Commun. 58, 739 (1986)

    Article  ADS  Google Scholar 

  30. Z. Sui, P.P. Leong, I.P. Herman, G.S. Higashi, H. Temkin, Appl. Phys. Lett. 60, 2086 (1992)

    Article  ADS  Google Scholar 

  31. G. Amato, V. Bullara, N. Brunetto, L. Boarino, Thin Solid Films 276, 204 (1996)

    Article  ADS  Google Scholar 

  32. L. Khriachtchev, M. Räsänen, S. Novikov, L. Pavesi, Appl. Phys. Lett. 85, 1511 (2004)

    Article  ADS  Google Scholar 

  33. N. Korsunska, B. Bulakh, B. Jumayev, L. Khomenkova, V. Yukhymchuk, T. Torchynska, Appl. Surf. Sci. 243, 30 (2005)

    Article  ADS  Google Scholar 

  34. K. Roodenko, I.A. Goldthorpe, P.C. McIntyre, Y.J. Chabal, Phys. Rev. B 82, 115210 (2010)

    Article  ADS  Google Scholar 

  35. J. Lu, X. Cheng, Y. Zhang, X. Zhu, Electrochim. Acta 55, 5084 (2010)

    Article  Google Scholar 

  36. P. Granitzer, K. Rumpf, Materials 3, 943 (2010)

    Article  ADS  Google Scholar 

  37. H. Kim, N. Cho, Nanoscale Res. Lett. 7, 408 (2012)

    Article  ADS  Google Scholar 

  38. V. Kumar, Nanosilicon (Elsevier, Oxford, 2008)

    Google Scholar 

  39. A.K. Arora, M. Rajalakshmi, T.R. Ravindran, V.J. Sivasubramanian, Raman Spectrosc. 38, 604–617 (2007)

    Article  ADS  Google Scholar 

  40. E.F. Schubert, Refractive index and extinction coefficient of materials (2004). http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf

  41. A.G. Cullis, L.T. Canham, D.J. Calcot, J. Appl. Phys. 82, 909 (1997)

    Article  ADS  Google Scholar 

  42. H. Yorikawa, S. Maramatsu, J. App. Phys. 84, 3354 (1998)

    Article  ADS  Google Scholar 

  43. G. Ledoux et al., Phys. Rev. B 62, 15942 (2000)

    Article  ADS  Google Scholar 

  44. C.R.B. Miranda, M.R. Baldan, Antonio F. Beloto, N.G. Ferreira, J. Braz. Chem. Soc. 19, 769 (2008)

    Article  Google Scholar 

  45. A.I. Manilov, V.A. Skryshevsky, Mater. Sci. Eng. B 178, 942 (2013)

    Article  Google Scholar 

  46. Y. Kim, J. Lee, Y. Kim, J. Kim, J. Semicon. Technol. Sci. 4, 128 (2004)

    Google Scholar 

  47. Y. Wang, S. Park, J. Yeow, A. Langner, F. Müller, Sens. Actuators B 149, 136 (2010)

    Article  Google Scholar 

  48. G. Scamarcio, V. Spagnolo, G. Ventruti, M. Lugara, G.C. Righini, Phys. Rev. B 53, R10489 (1996)

    Article  ADS  Google Scholar 

  49. P. Klar, C. Casiraghi, Phys. Status Solidi C 7, 2735–2738 (2010)

    Article  ADS  Google Scholar 

  50. J. Xu, P. Kvasnicka, M. Idso et al., Opt. Express 19, 20493 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Sevcan Ayaksız, Şaban Kalay and Ertuğ Avcı for Raman spectra measurements at Yeditepe University, Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Oguz Aytekin.

Additional information

Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguz Aytekin, S., Ince, R. Spectroscopy for the Analysis of Nanoporous Silicon Gas and Humidity Sensors. Int J Thermophys 39, 114 (2018). https://doi.org/10.1007/s10765-018-2435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2435-7

Keywords

Navigation