Skip to main content
Log in

Spectroscopic Detection of Critical Compression of Carbon Dioxide Confined in an Nanoporous Aerogel by Coherent Anti-Stokes Raman Spectroscopy

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The compaction of carbon dioxide in the pores of nanoporous silicon aerogel at near-critical temperatures has been studied by coherent anti-Stokes light scattering (CARS) spectroscopy. The density was determined by the shift of the vibrational line at 1388 cm\({}^{-1}\) under isochoric heating from the subcritical temperature of 25.2\({}^{\circ}\)C to the supercritical one of 31.95\({}^{\circ}\)C. It was found that the density of carbon dioxide in nanopores near the critical temperature increases, exceeding the average value in the cuvette by about \({\sim}20\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. D. Sanli, S. E. Bozbag, and C. Erkey, J. Mater. Sci. 47, 2995 (2011). https://doi.org/10.1007/s10853-011-6054-y

    Article  ADS  Google Scholar 

  2. S. E. Bozbag, D. Sanli, and C. Erkey, J. Mater. Sci. 47, 3469 (2012). https://doi.org/10.1007/s10853-011-6064-9

    Article  ADS  Google Scholar 

  3. D. K. Dutta, B. J. Borah, and P. P. Sarmah, Catal. Rev. 57, 257 (2015). https://doi.org/10.1080/01614940.2014.1003504

    Article  Google Scholar 

  4. N. Z. Zabukovec Logar and V. Kauiii, Acta Chim. Slov. 53, 117 (2006). https://doi.org/10.1002/masy.200950608

    Article  Google Scholar 

  5. D. J. Malik, C. Webb, R. G. Holdich, J. J. Ramsden, G. L. Warwick, I. Roche, D. J. Williams, A. W. Trochimczuk, J. A. Dale, and N. A. Hoenich, Sep. Purif. Technol. 66, 578 (2009). https://doi.org/10.1016/j.seppur.2009.01.016

    Article  Google Scholar 

  6. B. Szegedi, M. Popova, K. Yoncheva, J. Makk, J. Mihbly, and P. Shestakova, J. Mater. Chem. B 2, 6283 (2014).

    Article  Google Scholar 

  7. M. A. Massa, C. Covarrubias, M. Bittner, I. A. Fuentevilla, P. Capetillo, A. von Marttens, and J. C. Carvajal, Mater. Sci. Eng. C 45, 146 (2014).

    Article  Google Scholar 

  8. J. Tang, J. Liu, N. L. Torad, T. Kimura, and Y. Yamauchi, Nano Today 9, 305 (2014).

    Article  Google Scholar 

  9. N. Hüsing and U. Schubert, ‘‘Aerogels,’’ in Ullmann’s Encyclopedia of Industrial Chemistry, 2nd ed. (Wiley-VCH, Weinheim, 2006).

    Google Scholar 

  10. T. J. Hughes, A. Honari, B. F. Graham, A. S. Chauhan, M. L. Johns, and E. F. May, Int. J. Greenhouse Gas Control. 9, 457–468 (2012). https://doi.org/10.1016/j.ijggc.2012.05.011

    Article  Google Scholar 

  11. A. Saghafi, H. Javanmard, and K. Pinetown, Geofluids 14, 310 (2014). https://doi.org/10.1111/gfl.12078

    Article  Google Scholar 

  12. K. Morishige, H. Fujii, M. Uga, and D. Kinukawa, Langmuir 13, 3494 (1997). https://doi.org/10.1021/la970079u

    Article  Google Scholar 

  13. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999). https://doi.org/10.1088/0034-4885/62/12/201

    Article  ADS  Google Scholar 

  14. V. G. Arakcheev, V. N. Bagratashvili, A. A. Valeev, V. B. Morozov, A. N. Olenin, V. K. Popov, and V. G. Tunkin, Mosc. Univ. Phys. Bull. 63, 388 (2008). https://doi.org/10.3103/S0027134908060052

    Article  ADS  Google Scholar 

  15. V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, Laser Phys. 18, 1451 (2008). https://doi.org/10.1134/S1054660X08120128

    Article  ADS  Google Scholar 

  16. V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and I. R. Farizanov, Mosc. Univ. Phys. Bull. 66, 147 (2011). https://doi.org/10.3103/S0027134911020032

    Article  ADS  Google Scholar 

  17. O. V. Andreeva, V. G. Arakcheev, V. N. Bagratashvili, V. B. Morozov, V. K. Popov, and A. A. Valeev, J. Raman Spectrosc. 42, 1747 (2011). https://doi.org/10.1002/jrs.2979

    Article  ADS  Google Scholar 

  18. V. G. Arakcheev and V. B. Morozov, J. Raman Spectrosc. 44, 1363 (2013). https://doi.org/10.1002/jrs.4289

    Article  ADS  Google Scholar 

  19. V. G. Arakcheev and V. B. Morozov, J. Raman Spectrosc. 45, 501 (2014). https://doi.org/10.1002/jrs.4453

    Article  ADS  Google Scholar 

  20. V. G. Arakcheev, A. N. Bekin, and V. B. Morozov, Laser Phys. 27, 115701 (2017). https://doi.org/10.1088/1555-6611/aa8cd8

    Article  ADS  Google Scholar 

  21. V. G. Arakcheev, A. N. Bekin, and V. B. Morozov, J. Raman Spectrosc. 49, 1945 (2018). https://doi.org/10.1002/jrs.5491

    Article  ADS  Google Scholar 

  22. V. G. Arakcheev, A. N. Bekin, and V. B. Morozov, J. Supercrit. Fluids 143, 353 (2019). https://doi.org/10.1016/j.supflu.2018.09.014

    Article  Google Scholar 

  23. T. H. Elmer, ‘‘Porous and reconstructed glasses,’’ in Ceramics and Glasses, Ed. by S. J. Schneider, Jr., Vol. 4 of Engineered Materials Handbook (ASM Int., Materials Park, OH, 1991), pp. 427–432.

  24. A. F. Danilyuk, E. A. Kravchenko, A. G. Okunev, A. P. Onuchin, and S. A. Shaurman, Nucl. Instrum. Methods Phys. Res., Sect. A 433, 406 (1999). https://doi.org/10.1016/S0168-9002(99)00326-5

    Article  Google Scholar 

  25. A. F. Danilyuk, V. L. Kirillova, M. D. Savelieva, V. S. Bobrovnikov, A. R. Buzykaev, E. A. Kravchenko, A. V. Lavrov, and A. P. Onuchin, Nucl. Instrum. Methods Phys. Res., Sect. A 494, 491 (2002). https://doi.org/10.1016/S0168-9002(02)01537-1

    Article  Google Scholar 

  26. V. G. Arakcheev and V. B. Morozov, JETP Lett. 90, 524 (2009). https://doi.org/10.1134/S0021364009190060

    Article  ADS  Google Scholar 

  27. V. G. Arakcheev, V. N. Bagratashvili, A. A. Valeev, V. B. Morozov, and V. K. Popov, Russ. J. Phys. Chem. B 4, 1245 (2010). https://doi.org/10.1134/S1990793110080117

    Article  Google Scholar 

  28. R. Span and W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996). https://doi.org/10.1063/1.555991

    Article  ADS  Google Scholar 

Download references

Funding

>Measurements of the CARS spectra and analysis of the results were carried out with the financial support of the Russian Foundation for Basic Research, project no. 19-02-00978. The purchase of nanoporous sample, high-pressure cell, and equipment for creating supercritical state was supported by the Russian Foundation for Basic Research, project no. 18-29-06056. The CARS spectrometer used in this work was created with the support of The Development Program of the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Arakcheev.

Additional information

Translated by V. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakcheev, V.G., Bekin, A.N. & Morozov, V.B. Spectroscopic Detection of Critical Compression of Carbon Dioxide Confined in an Nanoporous Aerogel by Coherent Anti-Stokes Raman Spectroscopy. Moscow Univ. Phys. 75, 475–479 (2020). https://doi.org/10.3103/S0027134920050069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920050069

Keywords:

Navigation