Skip to main content
Log in

Diagnosis of Blood Gastric Cancer Biomarkers via Nanomaterial-Based Electrochemical Immunosensor: A Review on Recent Advancements (A Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is one of the considered enormously important cancer types in the world. A large number of mortality rates have revealed that there is a massive shortage in the prognosis and treatment of GC because the majority of GC cases are identified at an advanced stage. In this regard, the rapid platform for non-invasive detection of GC cells through the analysis of GC biomarkers in the first stages with high sensitivity is essential for the success in the treatment of GC. In recent years, different types of electrochemical immunosensors as efficient sensing devices with benefits including accuracy, reproducibility and low cost have played an extremely significant role in the monitoring of GC. One of the significant issues in the development of electrochemical immunosensors is to increase the system’s sensitivity. A variety of nanomaterials based on carbon-based, silica-based and metallic-based nanomaterials have been used as sensing platforms on the different types of electrochemical electrodes for improving the properties of biodevices. This review highlighted the new progress and technical breakthroughs comprising electrochemical immunosensor for the determination of GC biomarkers including CA19-9, CA72-4, CA125 and CEA. In diverse matrices and proved how nanoprobes could enhance the performance of electrochemical immunsensing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Kordasht, H.K. and Hasanzadeh, M., Aptamer based recognition of cancer cells: Recent progress and challenges in bioanalysis, Talanta, 2020, vol. 220, p. 121436.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D., Global cancer statistics, Cancer J. Clin., 2011, vol. 61, no. 2, p. 69.

    Article  Google Scholar 

  3. Wagner, A.D., Grothe, W., Haerting, J., Kleber, G., Grothey, A., and Fleig, W.E., Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data, J. Clin. Oncol., 2006, vol. 24, no. 18, p. 2903.

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto, H., Watanabe, Y., Sato, Y., Maehata, T., and Itoh, F., Non-invasive early molecular detection of gastric cancers, Cancers, 2020, vol. 12, no. 10, p. 2880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crew, K.D. and Neugut, A.I., Epidemiology of gastric cancer, World J. Gastroenterol., 2006, vol. 12, no. 3, p. 354.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schmidt, N., Peitz, U., Lippert, H., and Malfertheiner, P., Missing gastric cancer in dyspepsia, Aliment. Pharmacol. Ther., 2005, vol. 21, no. 7, p. 813.

    Article  CAS  PubMed  Google Scholar 

  7. Necula, L., Matei, L., Dragu, D., Neagu, A.I., Mambet, C., Nedeianu, S., Bleotu, C., Diaconu, C.C., and Chivu-Economescu, M., Recent advances in gastric cancer early diagnosis, World J. Gastroenterol., 2019, vol. 25, no. 17, p. 2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan, Y.K. and Fielding, J.W., Early diagnosis of early gastric cancer, Eur. J. Gastroenterol. Hepatology, 2006, vol. 18, no. 8, p. 821.

    Article  Google Scholar 

  9. Catalano, V., Labianca, R., Beretta, G.D., Gatta, G., De Braud, F., and Van Cutsem, E., Gastric cancer, Crit. Rev. Oncol./Hematol., 2009, vol. 71, no. 2, p. 127.

    Article  PubMed  Google Scholar 

  10. Kim, G.H., Bang, S.J., Ende, A.R., and Hwang, J.H., Is screening and surveillance for early detection of gastric cancer needed in Korean Americans?, Korean J. Intern. Med., 2015, vol. 30, no. 6, p. 747.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Choi, K.S. and Suh, M., Screening for gastric cancer: the usefulness of endoscopy, Clin. Endoscopy, 2014, vol. 47, no. 6, p. 490.

    Article  Google Scholar 

  12. Pruitt, R.E. and Truss, C.D., Endoscopy, gastric ulcer, and gastric cancer, Dig. Dis. Sci., 1993, vol. 38, no. 2, p. 284.

    Article  CAS  PubMed  Google Scholar 

  13. Farshchi, F., Saadati, A., and Hasanzadeh, M., An innovative immunoanalysis strategy towards sensitive recognition of PSA biomarker in Hhuman plasma samples using flexible and portable paper based biosensor: a new platform towards POC detection of cancer biomarkers using integration of pen-on paper technology with immunoassays methods, Immuno Anal., 2021, vol. 1, no. 1, p. 6.

    Article  Google Scholar 

  14. Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., and Valdes, J.J., Biosensor recognition elements, Curr. Issues Mol. Biol., 2008, vol. 10, nos. 1–2, p. 1.

    CAS  PubMed  Google Scholar 

  15. Putzbach, W. and Ronkainen, N.J., Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review, Sensors, 2013, vol. 13, no. 4, p. 4811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diculescu, V.C., Chiorcea-Paquim, A.-M., and Oliveira-Brett, A.M., Applications of a DNA-electrochemical biosensor, Trends Anal. Chem., 2016, vol. 79, p. 23.

    Article  CAS  Google Scholar 

  17. Uniyal, S. and Sharma, R.K., Technological advancement in electrochemical biosensor based detection of organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects, Biosens. Bioelectron., 2018, vol. 116, p p. 37.

  18. Hamdan, S.K., In vivo electrochemical biosensor for brain glutamate detection: a mini review, Malays. J. Med. Sci., 2014, vol. 21, special issue, p. 12.

    PubMed  PubMed Central  Google Scholar 

  19. Chen, C., Xie, Q., Yang, D., Xiao, H., Fu, Y., Tan, Y., and Yao, S., Recent advances in electrochemical glucose biosensors: a review, RSC Adv., 2013, vol. 3, no. 14, p. 4473.

    Article  CAS  Google Scholar 

  20. Xu, Y., Cheng, G., He, P., and Fang, Y., A review: electrochemical aptasensors with various detection strategies, Electroanal.: Int. J. Devoted Fundam. Pract. Aspects Electroanal., 2009, vol. 21, no. 11, p. 1251.

    Article  CAS  Google Scholar 

  21. Kotzev, A.I. and Draganov, P.V., Carbohydrate antigen 19-9, carcinoembryonic antigen, and carbohydrate antigen 72-4 in gastric cancer: is the old band still playing?, Gastrointest. Tumors, 2018, vol. 5, nos. 1–2, p. 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsuoka, T. and Yashiro, M., Biomarkers of gastric cancer: current topics and future perspective, World J. Gastroenterol., 2018, vol. 24, no. 26, p. 2818.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cohen, S.J., Punt, C., Iannotti, N., Saidman, B.H., Sabbath, K.D., Gabrail, N.Y., Picus, J., Morse, M., Mitchell, E., and Miller, M.C., Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer, J. Clin. Oncol., 2008, vol. 26, no. 19, p. 3213.

    Article  PubMed  Google Scholar 

  24. Tan, I.B., Ivanova, T., Lim, K.H., Ong, C.W., Deng, N., Lee, J., Tan, S.H., Wu, J., Lee, M.H., and Ooi, C.H., Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy, Gastroenterology, 2011, vol. 141, no. 2, p. 476.

    Article  PubMed  Google Scholar 

  25. Guo, J., Chen, S., Li, S., Sun, X., Li, W., Zhou, Z., Chen, Y., and Xu, D., A novel classifier based on three preoperative tumor markers predicting the cancer-specific survival of gastric cancer (CEA, CA19-9 and CA72-4), Oncotarget, 2018, vol. 9, no. 4, p. 4814.

    Article  PubMed  Google Scholar 

  26. Waddell, T., Chau, I., Cunningham, D., Gonzalez, D., Okines, A.F.C., Wotherspoon, A., Saffery, C., Middleton, G., Wadsley, J., and Ferry, D., Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial, Lancet Oncol., 2013, vol. 14, no. 6, p. 481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, Z., Zhang, J., Huang, Y., Zhai, J., Liao, G., Wang, Z., and Ning, C., Development of electroactive materials-based immunosensor towards early-stage cancer detection, Coord. Chem. Rev., 2022, vol. 471, p. 214723.

    Article  CAS  Google Scholar 

  28. Kannagi, R., Yin, J., Miyazaki, K., and Izawa, M., Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants-Hakomori’s concepts revisited, Biochim. Biophys. Acta – Gen. Subj., 2008, vol. 1780, no. 3, p. 525.

    Article  CAS  Google Scholar 

  29. Marrelli, D., Pinto, E., De Stefano, A., Farnetani, M., Garosi, L., and Roviello, F., Clinical utility of CEA, CA 19-9, and CA 72-4 in the follow-up of patients with resectable gastric cancer, Am. J. Surg., 2001, vol. 181, no. 1, p. 16.

    Article  CAS  PubMed  Google Scholar 

  30. Ohkura, H., Sakawaki, O., and Ozaki, H., Enzyme immunoassay of CA19-9, in Enzyme Immunoassay and Its Clinical Application, Kan, Tan, Sui, Japan, 1985, vol. 11, p. 21.

  31. Del Villano, B., Brennan, S., Brock, P., Bucher, C., Liu, V., McClure, M., Rake, B., Space, S., Westrick, B., and Schoemaker, H., Radioimmunometric assay for a monoclonal antibody-defined tumor marker, CA 19-9, Clin. Chem., 1983, vol. 29, no. 3, p. 549.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, J., Yan, F., Hu, X., and Ju, H., Chemiluminescent immunosensor for CA19-9 based on antigen immobilization on a cross-linked chitosan membrane, J. Immunol. Methods, 2004, vol. 291, nos. 1–2, p. 165.

    Article  CAS  PubMed  Google Scholar 

  33. Hu, F., Chen, S., and Yuan, R., Application of magnetic core-shell microspheres on reagentless immunosensor based on direct electrochemistry of glucose oxidase for detection of carbohydrate antigen 19-9, Sens. Actuators B: Chem., 2013, vol. 176, p. 713.

    Article  CAS  Google Scholar 

  34. Kounaves, S.P., in Handbook of Instrumental Techniques for Analytical Chemistry, Settle, F., Ed., Upper Saddle River, NJ: Prentice Hall, 1997, chapter 37, p. 709.

    Google Scholar 

  35. Gupta, V.K., Jain, R., Radhapyari, K., Jadon, N., and Agarwal, S., Voltammetric techniques for the assay of pharmaceuticals-a review, Anal. Biochem., 2011, vol. 408, no. 2, p. 179.

    Article  CAS  PubMed  Google Scholar 

  36. Saadati, A. and Hasanzadeh, M., A flexible paper based electrochemical biosensor towards recognition of ractopamine as animal feed additive: low cost diagnostic tool towards food analysis, Food Chem. A, 2021, vol. 373, p. 131411.

    Google Scholar 

  37. Wang, L., Shan, J., Feng, F., and Ma, Z., Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199, Anal. Chim. Acta, 2016, vol. 911, p. 108.

    Article  CAS  PubMed  Google Scholar 

  38. Huang, Z., Jiang, Z., Zhao, C., Han, W., Lin, L., Liu, A., Weng, S., and Lin, X., Simple and effective label-free electrochemical immunoassay for carbohydrate antigen 19-9 based on polythionine-Au composites as enhanced sensing signals for detecting different clinical samples, Int. J. Nanomed., 2017, vol. 12, p. 3049.

    Article  CAS  Google Scholar 

  39. Su, C.-W., Tian, J.-H., Ye, J.-J., Chang, H.-W., and Tsai, Y.-C., Construction of a label-free electrochemical immunosensor based on Zn-Co-S/graphene nanocomposites for carbohydrate antigen19-9 detection, Nanomaterials, 2021, vol. 11, no. 6, p. 1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, A.-L. and Qi, Q.-A., Silver-functionalized gC 3 N 4 nanohybrids as signal-transduction tags for electrochemical immunoassay of human carbohydrate antigen 19-9, Analyst, 2016, vol. 141, no. 14, p. 4366.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas, A. and Kumar, K.G., Acetylene black-chitosan mediated electro-oxidation of serotonin and melatonin: an efficient platform for simultaneous voltammetric sensing, Ionics, 2019, vol. 25, p. 2337.

    Article  CAS  Google Scholar 

  42. Guo, A., Li, Y., Cao, W., Meng, X., Wu, D., Wei, Q., and Du, B., An electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 199 based on Au@CuxOS yolk-shell nanostructures with porous shells as labels, Biosens. Bioelectron., 2015, vol. 63, p. 39.

    Article  CAS  PubMed  Google Scholar 

  43. Mahmoudpour, M., Kholafazad-kordasht, H., Dolatabadi, J.E.N., Hasanzadeh, M., Rad, A.H., and Torbati, M., Sensitive aptasensing of ciprofloxacin residues in raw milk samples using reduced graphene oxide and nanogold-functionalized poly (amidoamine) dendrimer: an innovative apta-platform towards electroanalysis, Anal. Chim. Acta, 2021, vol. 1174, p. 338736.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Q., Chen, X., Tang, Y., Ge, L., Guo, B., and Yao, C., Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase, Anal. Chim. Acta, 2014, vol. 815, p. 42.

    Article  CAS  PubMed  Google Scholar 

  45. Kordasht, H.K., Pazhuhi, M., Pashazadeh-Panahi, P., Hasanzadeh, M., and Shadjou, N., Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: recent advances, Trends Anal. Chem., 2020, vol. 124, p. 115778.

    Article  Google Scholar 

  46. Singh, B., Na, J., Konarova, M., Wakihara, T., Yamauchi, Y., Salomon, C., and Gawande, M.B., Functional mesoporous silica nanomaterials for catalysis and environmental applications, Bull. Chem. Soc. Jpn., 2020, vol. 93, no. 12, p. 1459.

    Article  CAS  Google Scholar 

  47. Wang, Y., Zhao, G., Zhang, Y., Du, B., and Wei, Q., Ultrasensitive photoelectrochemical immunosensor based on Cu-doped TiO2 and carbon nitride for detection of carcinoembryonic antigen, Carbon, 2019, vol. 146, p. 276.

    Article  CAS  Google Scholar 

  48. Gold, P. and Freedman, S.O., Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques, J. Exp. Med., 1965, vol. 121, no. 3, p. 439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, S., Chen, Y.-B., Li, Y.-F., Feng, X.-Y., Zhou, Z.-W., Yuan, X.-H., and Qian, C.-N., Normal carcinoembryonic antigen indicates benefit from perioperative chemotherapy to gastric carcinoma patients, World J. Gastroenterol., 2012, vol. 18, no. 29, p. 3910.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen, P., Hua, X., Liu, J., Liu, H., Xia, F., Tian, D., and Zhou, C., A dual amplification electrochemical immunosensor based on HRP-Au@Ag NPs for carcinoembryonic antigen detection, Anal. Biochem., 2019, vol. 574, p. 23.

    Article  CAS  PubMed  Google Scholar 

  51. Han, J., Li, Y., Feng, J., Li, M., Wang, P., Chen, Z., and Dong, Y., A novel sandwich-type immunosensor for detection of carcino-embryonic antigen using silver hybrid multiwalled carbon nanotubes/manganese dioxide, J. Electroanal. Chem., 2017, vol. 786, p. 112.

    Article  CAS  Google Scholar 

  52. Zhang, C., Zhang, S., Jia, Y., Li, Y., Wang, P., Liu, Q., Xu, Z., Li, X., and Dong, Y., Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO, Biosens. Bioelectron., 2019, vol. 126, p. 785.

    Article  CAS  PubMed  Google Scholar 

  53. Su, S., Sun, Q., Wan, L., Gu, X., Zhu, D., Zhou, Y., Chao, J., and Wang, L., Ultrasensitive analysis of carcinoembryonic antigen based on MoS2-based electrochemical immunosensor with triple signal amplification, Biosens. Bioelectron., 2019, vol. 140, p. 111353.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, Y., Jiang, M., Cao, K., Wu, M., Zhao, C., Li, H., and Hong, C., An electrochemical immunosensor for CEA detection based on Au-Ag/rGO@PDA nanocomposites as integrated double signal amplification strategy, Microchem. J., 2019, vol. 151, p. 104223.

    Article  CAS  Google Scholar 

  55. Li, X., Liu, L., Xu, Z., Wang, W., Shi, J., Liu, L., Jing, M., Li, F., and Zhang, X., Gamma irradiation and microemulsion assisted synthesis of monodisperse flower-like platinum-gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive detection of carcinoembryonic antigen, Sens. Actuators B: Chem., 2019, vol. 287, p. 267.

    Article  CAS  Google Scholar 

  56. Song, Y., Cao, K., Li, W., Ma, C., Qiao, X., Li, H., and Hong, C., Optimal film thickness of rGO/MoS2@polyaniline nanosheets of 3D arrays for carcinoembryonic antigen high sensitivity detection, Microchem. J., 2020, vol. 155, p. 104694.

    Article  CAS  Google Scholar 

  57. Emoto, S., Ishigami, H., Yamashita, H., Yamaguchi, H., Kaisaki, S., and Kitayama, J., Clinical significance of CA125 and CA72-4 in gastric cancer with peritoneal dissemination, Gastric Cancer, 2012, vol. 15, no. 2, p. 154.

    Article  CAS  PubMed  Google Scholar 

  58. Goral, V., Yesilbagdan, H., Kaplan, A., and Sit, D., Evaluation of CA 72-4 as a new tumor marker in patients with gastric cancer, Hepato-Gastroenterol., 2007, vol. 54, no. 76, p. 1272.

    CAS  Google Scholar 

  59. Ikeguchi, M., Katano, K., Saitou, H., Tsujitani, S., Maeta, M., and Kaibara, N., Pre-operative serum levels of CA72-4 in patients with gastric adenocarcinoma, Hepato-Gastroenterol., 1997, vol. 44, no. 15, p. 866.

    CAS  Google Scholar 

  60. Sougioultzis, S., Syrios, J., Xynos, I., Bovaretos, N., Kosmas, C., Sarantonis, J., Dokou, A., Tzivras, D., Zografos, G., and Felekouras, E., Palliative gastrectomy and other factors affecting overall survival in stage IV gastric adenocarcinoma patients receiving chemotherapy: a retrospective analysis, Eur. J. Surg. Oncol., 2011, vol. 37, no. 4, p. 312.

    Article  CAS  PubMed  Google Scholar 

  61. Fan, H., Guo, Z., Gao, L., Zhang, Y., Fan, D., Ji, G., Du, B., and Wei, Q., Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline-Au asymmetric multicomponent nanoparticles, Biosens. Bioelectron., 2015, vol. 64, p. 51.

    Article  CAS  PubMed  Google Scholar 

  62. Wu, D., Guo, Z., Liu, Y., Guo, A., Lou, W., Fan, D., and Wei, Q., Sandwich-type electrochemical immunosensor using dumbbell-like nanoparticles for the determination of gastric cancer biomarker CA72-4, Talanta, 2015, vol. 134, p. 305.

    Article  CAS  PubMed  Google Scholar 

  63. Hong, G., Chen, R., Xu, L., Lu, X., Yang, Z., Zhou, G., Li, L., Chen, W., and Peng, H., One-pot ultrasonic synthesis of multifunctional Au nanoparticle-ferrocene-WS2 nanosheet composite for the construction of an electrochemical biosensing platform, Anal. Chim. Acta, 2020, vol. 1099, p. 52.

    Article  CAS  PubMed  Google Scholar 

  64. Fujimura, T., Kinami, S., Ninomiya, I., Kitagawa, H., Fushida, S., Nishimura, G., Kayahara, M., Shimizu, K., Ohta, T., and Miwa, K., Diagnostic laparoscopy, serum CA125, and peritoneal metastasis in gastric cancer, Endoscopy, 2002, vol. 34, no. 07, p. 569.

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, Y., Wang, H., and Ma, Z., A nanocomposite containing Prussian Blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125, Microchim. Acta, 2017, vol. 184, no. 11, p. 4269.

    Article  CAS  Google Scholar 

  66. de Castro, A.C.H., Alves, L.M., Siquieroli, A.C.S., Madurro, J.M., and Brito-Madurro, A.G., Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum, Microchem. J., 2020, vol. 155, p. 104746.

    Article  Google Scholar 

  67. Paul, K.B., Singh, V., Vanjari, S.R.K., and Singh, S.G., One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125, Biosens. Bioelectron., 2017, vol. 88, p. 144.

    Article  CAS  PubMed  Google Scholar 

  68. Zouaoui, F., Bourouina-Bacha, S., Bourouina, M., Jaffrezic-Renault, N., Zine, N., and Errachid, A., Electrochemical sensors based on molecularly imprinted chitosan: a review, Trends Anal. Chem., 2020, vol. 130, p. 115982.

    Article  CAS  Google Scholar 

  69. Pakchin, P.S., Ghanbari, H., Saber, R., and Omidi, Y., Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker, Biosens. Bioelectron., 2018, vol. 122, p. 68.

    Article  Google Scholar 

  70. Pakchin, P.S., Fathi, M., Ghanbari, H., Saber, R., and Omidi, Y., A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer, Biosens. Bioelectron., 2020, vol. 153, p. 112029.

    Article  Google Scholar 

  71. Jiang, Z., Zhao, C., Lin, L., Weng, S., Liu, Q., and Lin, X., A label-free electrochemical immunosensor based on poly (thionine)-SDS nanocomposites for CA19-9 detection, Anal. Methods, 2015, vol. 7, no. 11, p. 4508.

    Article  CAS  Google Scholar 

  72. Yang, F., Yang, Z., Zhuo, Y., Chai, Y., and Yuan, R., Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers, Biosens. Bioelectron., 2015, vol. 66, p. 356.

    Article  CAS  PubMed  Google Scholar 

  73. Du, D., Xu, X., Wang, S., and Zhang, A., Reagentless amperometric carbohydrate antigen 19-9 immunosensor based on direct electrochemistry of immobilized horseradish peroxidase, Talanta, 2007, vol. 71, no. 3, p. 1257.

    Article  CAS  PubMed  Google Scholar 

  74. Du, D., Yan, F., Liu, S., and Ju, H., Immunological assay for carbohydrate antigen 19-9 using an electrochemical immunosensor and antigen immobilization in titania sol-gel matrix, J. Immunol. Methods, 2003, vol. 283, nos. 1–2, p. 67.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, R., Feng, J.-J., Liu, W.-D., Jiang, L.-Y., and Wang, A.-J., A novel label-free electrochemical immunosensor based on the enhanced catalytic currents of oxygen reduction by AuAg hollow nanocrystals for detecting carbohydrate antigen 19-9, Biosens. Bioelectron., 2017, vol. 96, p. 152.

    Article  CAS  PubMed  Google Scholar 

  76. Wang, M., Hu, M., Hu, B., Guo, C., Song, Y., Jia, Q., He, L., Zhang, Z., and Fang, S., Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9, Biosens. Bioelectron., 2019, vol. 135, p. 22.

    Article  CAS  PubMed  Google Scholar 

  77. Weng, X., Liu, Y., Xue, Y., Wang, A.-J., Wu, L., and Feng, J.-J., L-proline bio-inspired synthesis of AuPt nanocalliandras as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 19-9, Sens. Actuators B: Chem., 2017, vol. 250, p. 61.

    Article  CAS  Google Scholar 

  78. Ibáñez-Redín, G., Furuta, R.H., Wilson, D., Shimizu, F.M., Materon, E.M., Arantes, L.M.R.B., Melendez, M.E., Carvalho, A.L., Reis, R.M., and Chaur, M.N., Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9, Mater. Sci. Eng. C, 2019, vol. 99, p. 1502.

    Article  Google Scholar 

  79. Yan, Z., Xing, J., He, R., Guo, Q., and Li, J., Probe-integrated label-free electrochemical immunosensor based on binary nanocarbon composites for detection of CA19-9, Molecules, 2022, vol. 27, no. 20, p. 6778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, Q., Chen, F., Qiu, L., Mu, Y., Sun, S., Yuan, X., Shang, P., and Ji, B., Detection of esophageal cancer marker CA19-9 based on MXene electrochemical immunosensor, Int. J. Electrochem. Sci., 2022, vol. 17, no. 7, p. 220712.

    Article  CAS  Google Scholar 

  81. Qiu, R., Dai, J., Meng, L., Gao, H., Wu, M., Qi, F., Feng, J., and Pan, H., A novel electrochemical immunosensor based on COF-LZU as precursor to form heteroatom-doped carbon nanosphere for CA19-9 detection, Appl. Biochem. Biotechnol., 2022, vol. 194, no. 6, p. 1.

    Article  Google Scholar 

  82. Wei, Z., Cai, X., Cui, W., and Zhang, J., Electrochemical immunoassay for tumor marker CA19-9 detection based on self-assembled monolayer, Molecules, 2022, vol. 27, no. 14, p. 4578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sharifi, S., Vahed, S.Z., Ahmadian, E., Dizaj, S.M., Eftekhari, A., Khalilov, R., Ahmadi, M., Hamidi-Asl, E., and Labib, M., Detection of pathogenic bacteria via nanomaterials-modified aptasensors, Biosens. Bioelectron., 2020, vol. 150, p. 111933.

    Article  CAS  PubMed  Google Scholar 

  84. Feng, T., Qiao, X., Wang, H., Sun, Z., and Hong, C., A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe3O4@SiO2 as labels, Biosens. Bioelectron., 2016, vol. 79, p. 48.

    Article  CAS  PubMed  Google Scholar 

  85. Chen, Y., Li, Y., Deng, D., He, H., Yan, X., Wang, Z., Fan, C., and Luo, L., Effective immobilization of Au nanoparticles on TiO2 loaded graphene for a novel sandwich-type immunosensor, Biosens. Bioelectron., 2018, vol. 102, p. 301.

    Article  CAS  PubMed  Google Scholar 

  86. Abadie, T., Sella, C., Perrodin, P., and Thouin, L., Electrochemical generation and detection of transient concentration gradients in microfluidic channels. Theoretical and experimental investigations, Front. Chem., 2019, vol. 7, p. 704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Song, Y., Li, W., Ma, C., Sun, Y., Qiao, J., Li, H., and Hong, C., First use of inorganic copper silicate-transduced enzyme-free electrochemical immunosensor for carcinoembryonic antigen detection, Sens. Actuators B: Chem., 2020, vol. 319, p. 128311.

    Article  CAS  Google Scholar 

  88. Chen, Y., Wang, A.-J., Yuan, P.-X., Luo, X., Xue, Y., and Feng, J.-J., Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen, Biosens. Bioelectron., 2019, vol. 132, p. 294.

    Article  CAS  PubMed  Google Scholar 

  89. Jia, Y., Li, Y., Zhang, S., Wang, P., Liu, Q., and Dong, Y., Mulberry-like Au@ PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA, Biosens. Bioelectron., 2020, vol. 149, p. 111842.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, X., Yu, Y., Shen, J., Qi, W., and Wang, H., Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein, Talanta, 2020, vol. 212, p. 120794.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, J., Yang, L., Pei, J., Tian, Y., and Liu, J., A reagentless electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on the interface with redox probe-modified electron transfer wires and effectively immobilized antibody, Front. Chem., 2022, vol. 10, p. 939736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, X., Liao, X., Zhang, B., Chen, S., Zhang, M., Mei, L., Zhang, L., Qiao, X., and Hong, C., Fabrication of a novel electrochemical immunosensor for the sensitive detection of carcinoembryonic antigen using a double signal attenuation strategy, Anal. Chim. Acta, 2022, vol. 1232, p. 340455.

    Article  CAS  PubMed  Google Scholar 

  93. Zhao, Z., Wang, P., Tang, F., Wang, Y., Wang, S., Liu, Q., and Li, Y., Electrochemical immunosensor based on multi-order Rubik’s cube-type platinum nickel nanocubes and Au NPs/cPDA NTs for detection of CEA, Bioelectrochemistry, 2023, vol. 149, p. 108325.

    Article  CAS  PubMed  Google Scholar 

  94. Liang, H., Luo, Y., Li, Y., Song, Y., and Wang, L., An immunosensor using electroactive COF as signal probe for electrochemical detection of carcinoembryonic antigen, Anal. Chem., 2022, vol. 94, no. 13, p. 5352.

    Article  CAS  PubMed  Google Scholar 

  95. Dominguez-Aragón, A., Zaragoza-Contreras, E.A., Figueroa-Miranda, G., Offenhäusser, A., and Mayer, D., Electrochemical immunosensor using electroactive carbon nanohorns for signal amplification for the rapid detection of carcinoembryonic antigen, Biosensors, 2023, vol. 13, no. 1, p. 63.

    Article  Google Scholar 

  96. Raghav, R. and Srivastava, S., Copper(II) oxide nanoflakes based impedimetric immunosensor for label free determination of cancer antigen-125, Sens. Lett., 2016, vol. 14, no. 1, p. 97.

    Article  Google Scholar 

  97. Raghav, R. and Srivastava, S., Core–shell gold-silver nanoparticles based impedimetric immunosensor for cancer antigen CA125, Sens. Actuators B: Chem., 2015, vol. 220, p. 557.

    Article  CAS  Google Scholar 

  98. Wang, F.-M., Huang, S.-H., Yuan, C.-C., Yeh, C.-T., Chen, W.-L., Wang, X.-C., Runprapan, N., Tsai, Y.-J., Chuang, Y.-L., and Su, C.-H., Detection of O-glycosylated CA125 by using an electrochemical immunosensor for ovarian cancer diagnosis, J. Appl. Electrochem., 2020, vol. 50, no. 11, p. 1189.

    Article  CAS  Google Scholar 

  99. Kumar, N., Sharma, S., and Nara, S., Dual gold nanostructure-based electrochemical immunosensor for CA125 detection, Appl. Nanosci., 2018, vol. 8, no. 7, p. 1843.

    Article  CAS  Google Scholar 

  100. Gazze, A., Ademefun, R., Conlan, R.S., and Teixeira, S.R., Electrochemical impedence spectroscopy enabled CA125 detection; toward early ovarian cancer diagnosis using graphene biosensors, J. Interdiscip. Nanomed., 2018, vol. 3, no. 2, p. 82.

    Article  CAS  Google Scholar 

  101. Torati, S.R., Kasturi, K.C., Lim, B., and Kim, C., Hierarchical gold nanostructures modified electrode for electrochemical detection of cancer antigen CA125, Sens. Actuators B: Chem., 2017, vol. 243, p. 64.

    Article  CAS  Google Scholar 

  102. Ren, X., Wang, H., Wu, D., Fan, D., Zhang, Y., Du, B., and Wei, Q., Ultrasensitive immunoassay for CA125 detection using acid site compound as signal and enhancer, Talanta, 2015, vol. 144, p. 535.

    Article  CAS  PubMed  Google Scholar 

  103. Chen, Z., Li, B., Liu, J., Li, H., Li, C., Xuan, X., and Li, M., A label-free electrochemical immunosensor based on a gold-vertical graphene/TiO2 nanotube electrode for CA125 detection in oxidation/reduction dual channels, Microchim. Acta, 2022, vol. 189, no. 7, p. 1.

    Article  Google Scholar 

  104. Wu, M., Liu, S., Qi, F., Qiu, R., Feng, J., Ren, X., Rong, S., Ma, H., Chang, D., and Pan, H., A label-free electrochemical immunosensor for CA125 detection based on CMK-3 (Au/Fc@MgAl-LDH) n multilayer nanocomposites modification, Talanta, 2022, vol. 241, p. 123254.

    Article  CAS  PubMed  Google Scholar 

  105. Yang, Z., Zhang, W., Yin, Y., Fang, W., and Xue, H., Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens, Food Control, 2022, vol. 133, p. 108684.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by “Hematology and Oncology Research Center, Tabriz University of Medical Sciences”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mortaza Raeisi.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The regional ethical committee of Tabriz University of Medical Sciences approved the study; Approval ID: IR.TBZMED.REC.1400.874.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojtaba Zehtabi, Mortaza Raeisi Diagnosis of Blood Gastric Cancer Biomarkers via Nanomaterial-Based Electrochemical Immunosensor: A Review on Recent Advancements (A Review). Russ J Electrochem 60, 73–90 (2024). https://doi.org/10.1134/S1023193524010142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524010142

Keywords:

Navigation