Skip to main content
Log in

Electrosynthesis of Nanocomposites of Catalytic Active Pd–Cu and Pd–Au Bimetallic Nanoparticles with Poly(N-vinylpyrrolidone) and Nanocellulose

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The work considers the preparation in an undivided cell of Pd–Cu and Pd–Au bimetallic nanoparticles (NPs) by methylviologen (MV2+)-mediated electrochemical reduction of equimolar amounts of Cu(II), Pd(II), and Au(I) in the presence of poly(N-vinylpyrrolidone) (PVP) and nanocellulose (NC) under controlled potential of the generating MV•+ cation radical in aqueous medium at room temperature. Electrosyntheses are performed by sequential or joint reduction of metal ions by passing a theoretical charge. When Pd(II) ions are added to CuNPs, as well as when Au(I) ions are added to PdNPs, a galvanic replacement process is observed, namely oxidation of Cu0 by Pd(II) and Pd0 Au(I) ions. The results of the complete reduction are nanocomposites of mainly spherical MNPs, dispersed in the solution bulk and stabilized by PVP on the surface of the NC. In the sequential synthesis of CuNPs and then PdNPs, the nanocomposite is represented as Cu2O nanoroses coated with fine PdNPs. Pd nanocomposites with Cu2O or Au are represented mainly by spherical particles with size of 4–50 nm depending on the production method. X-ray powder diffraction (XRPD) data of the nanocomposites confirm the formation of a mixture of PdNPs (0.8–10 nm) with large gold crystallites (up to 24 nm), as well as the oxidation of CuNPs to cuprite (Cu2O). The size of the metal crystallites and copper oxide varies in the range from 0.8 to 24 nm. In the test reaction of p‑nitrophenol reduction with sodium borohydride in aqueous medium, all of the tested nanocomposites show time-increasing catalytic activity. When Cu is added to Pd, the catalytic reduction reaction is maintained, while the addition of Au to Pd decreases the catalytic activity of PdNPs by an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. Kuncser, V., Coman, S.M., Kemnitz, E., and Parvulescu, V.I., Magnetic nanocomposites for an efficient valorization of biomass, J. Appl. Phys., 2015, vol. 117, p. D724.

    Article  Google Scholar 

  2. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanoparticles of Metals in Polymers, Moscow: Khimiya, 2002.

    Google Scholar 

  3. Daniel, M.C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, vol. 104, p. 293.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, A., Li, J., and Zhang, T., Heterogeneous single-atom catalysis, Nat. Rev. Chem., 2018, vol. 2, p. 65.

    Article  CAS  Google Scholar 

  5. Kharisov, B.I., Kharissova, O.V., and Ortiz-Méndez, U., Handbook of Less-Common Nanostructures, New York: CRC Press, 2012.

    Book  Google Scholar 

  6. Yanilkin, V.V., Nasretdinova, G.R., and Kokorekin, V.A., Mediated electrochemical synthesis of metal nanoparticles, Usp. Khim., 2018, vol. 87, p. 1080.

    Article  CAS  Google Scholar 

  7. Suzdalev, I.P., Nanotechnology. Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials, 2nd ed., Moscow: KomKniga, 2006.

    Google Scholar 

  8. Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dil’man, A.D., Levin, V.V., Koptyug, I.V., Kovtu-nov, K.V., Zhivonitko, V.V., Likholobov, V.A., Romanenko, A.V., Simonov, P.A., Nenaidenko, V.G., Shmatova, O.I., Muzalevskii, V.M., Nechaev, M.S., Asachenko, A.F., Morozov, O.S., Dzhevakov, P.B., Osipov, S.N., Vorob’eva, D.V., Topchii, M.A., Zotova, M.A., Ponomarenko, S.A., Borshchev, O.V., Luponosov, Yu.N., Rempel’, A.A., Valeeva, A.A., Stakheev, A.Yu., Turova, O.V., Mashkovskii, I.S., Sysolyatin, S.V., Malykhin, V.V., Bukhtiyarova, G.A., Terent’ev, A.O., and Krylov, I.B., Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision, Usp. Khim., 2014, vol. 83, p. 885.

    Article  Google Scholar 

  9. Shaabani, A. and Mahyari, M., PdAu alloy nanoparticles encapsulated by PPI-g-MWCNTs as a novel catalyst for chemoselective hydrogenation of alkenes under mild conditions, Catal. Lett., 2013, vol. 143, p. 1277.

    Article  CAS  Google Scholar 

  10. Li, X., Zeng, Z., Hu, B., Qian, L., and Hong, X., Surface-atom dependence of ZnO-supported Ag@Pd core@shell nanocatalysts in CO2 hydrogenation to CH3OH, Chem. Cat. Chem., 2017, vol. 9, p. 924.

    CAS  Google Scholar 

  11. Zhang, Y., Diao, W., Monnier, J.R., and Williams, C.T., Pd-Ag/SiO2 bimetallic catalysts prepared by galvanic displacement for selective hydrogenation of acetylene in excess ethylene, Catal. Sci. Technol., 2015, vol. 5, p. 4123.

    Article  CAS  Google Scholar 

  12. Heshmatpour, F., Abazari, R., and Balalaie, S., Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction, Tetrahedron, 2012, vol. 68, p. 3001.

    Article  CAS  Google Scholar 

  13. Wu, Y., Wang, D., Zhao, P., Niu, Z., Peng, Q., and Li, Y., Monodispersed Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction, Inorg. Chem., 2011, vol. 50, p. 2046.

    Article  CAS  PubMed  Google Scholar 

  14. Ru, Y., Huang, Y., Wang, Y., and Dai, L., Pd-Cu alloy nanoparticle supported on amine-terminated ionic liquid functional 3D graphene and its application on Suzuki cross-coupling reaction, Appl. Organometal. Chem., 2019, vol. 33, p. e5198.

    Article  CAS  Google Scholar 

  15. Chen, M., Zhang, Z., Li, L., Liu, Y., Wang, W., and Gao, J., Fast synthesis of Ag-Pd@reduced graphene oxide bimetallic nanoparticles and their applications as carbon-carbon coupling catalysts, RSC Adv., 2014, vol. 4, p. 30914.

    Article  CAS  Google Scholar 

  16. Nasretdinova, G.R., Fazleeva, R.R., Osin, Y.N., Evtugyn, V.G., Gubaidullin, A.T., Ziganshina, A.Y., and Yanilkin, V.V., Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC, Electrochim. Acta, 2018, vol. 285, p. 149.

    Article  CAS  Google Scholar 

  17. Lee, G., Nguyen, N.-A., Nguyen, V.-T., Larina, L.L., Chuluunbat, E., Park, E., Kim, J., Choi, H.-S., and Keidar, M., High entropy alloy electrocatalyst synthesized using plasma ionic liquid reduction, J. Solid State Chem., 2022, vol. 314, p. 123388.

    Article  CAS  Google Scholar 

  18. Liu, J., Lan, L., Li, R., Liu, X., and Wu, C., Agglomerated Ag–Pd catalyst with performance for hydrogen generation from formic acid at room temperature, Int. J. Hydrogen Energy, 2016, vol. 41, p. 951.

    Article  CAS  Google Scholar 

  19. Bondarchuk, I.S. and Mamontov, G.V., Role of PdAg interface in Pd-Ag/SiO2 bimetallic catalysts in low-temperature oxidation of carbon monoxide, Kinet. Kataliz, 2015, vol. 56, p. 379.

    Article  CAS  Google Scholar 

  20. Santhanalakshmi, J. and Venkatesan, P., Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y, J. Nanopart. Res., 2011, vol. 13, p. 479.

    Article  CAS  Google Scholar 

  21. Liu, X., Conte, M., He, Q., Knight, D.W., Murphy, D.M., Taylor, S.H., Whiston, K., Kiely, C.J., and Hutchings, G.J., Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide, Chem. Eur. J., 2017, vol. 23, p. 11834.

    Article  CAS  PubMed  Google Scholar 

  22. An, C., Kuang, Y., Fu, C., Zeng, F., Wang, W., and Zhou, H., Study on Ag-Pd bimetallic nanoparticles for electrocatalytic reduction of benzyl chloride, Electrochem. Commun., 2011, vol. 13, p. 1413.

    Article  CAS  Google Scholar 

  23. Benipal, N., Qi, J., Liu, Q., and Li, W., Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells, Appl. Catal., 2017, vol. 210, p. 121.

    Article  CAS  Google Scholar 

  24. Han, X.-W., Guo, S., Li, T., Peng, J., and Pan, H., Construction of Ag/3D-reduced graphene oxide nanocomposite with advanced catalytic capacity for 4-nitrophenol and methylene blue, Colloids Surf. A: Physicochem. Eng. Aspects, 2022, vol. 650, p. 128688.

    Article  CAS  Google Scholar 

  25. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Nastapova, N.V., and Osin, Y.N., Fullerene mediated electrosynthesis of silver nanoparticles in toluene-DMF, ECS J. Solid State Sci. Technol., 2018, vol. 7, p. M55.

    Article  CAS  Google Scholar 

  26. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Yu.N., and Gubaidullin, A.T., Fullerene mediated electrosynthesis of Au/C60 nanocomposite, ECS J. Solid State Sci. Technol., 2017, vol. 6, no. 4, p. M19.

    Article  CAS  Google Scholar 

  27. An, K. and Somorjai, G.A., Nanocatalysis I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies, Catal. Lett., 2015, vol. 145, p. 233.

    Article  CAS  Google Scholar 

  28. Zhang, S., Wu, Q., Tang, L., Hu, Y., Wang, M., Zhao, J., Li, M., Han, J., Liu, X., and Wang, H., Individual high-quality N-doped carbon nanotubes embedded with nonprecious metal nanoparticles toward electrochemical reaction, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 39757.

    Article  CAS  PubMed  Google Scholar 

  29. Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., Electrochemical dispersion technique for preparation of hybrid MOx/C supports and Pt/MOx/C electrocatalysts for low-temperature fuel cells, J. Appl. Electrochem., 2016, vol. 46, p. 1245.

    Article  CAS  Google Scholar 

  30. Kuriganova, A.B., Leontyev, I.N., Alexandrin, A.S., Maslova, O.A., Rakhmatullin, A.I., and Smirnova, N.V., Electrochemically synthesized Pt/TiO2/C catalysts for direct methanol fuel cell applications, Mendeleev Commun., 2017, vol. 27, p. 67.

    Article  CAS  Google Scholar 

  31. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., and Gubaidullin, A.T., Two-step one-pot electrosynthesis and catalytic activity of the CoO–CoO·xH2O supported silver nanoparticles, J. Solid State Electrochem., 2020, vol. 24, p. 829.

    Article  CAS  Google Scholar 

  32. Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Ziganshina, A.Yu., and Yanilkin, V.V., Two-step electrosynthesis and catalytic activity of CoO–CoO·xH2O-supported Ag, Au, and Pd nanoparticles, Izv. Russ. Akad. Nauk, Ser. Khim., 2020, vol. 69, p. 241.

    CAS  Google Scholar 

  33. Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Samigullina, A.I., Gubaidullin, A.T., and Yanilkin, V.V., CoO-xCo(OH)2 supported silver nanoparticles: electrosynthesis in acetonitrile and catalytic activity, Mendeleev Commun., 2020, vol. 30, p. 456.

    Article  CAS  Google Scholar 

  34. Nastapova, N.V., Nasretdinova, G.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Two-step mediated electrosynthesis and catalytic activity of Au/Cu2O@poly(N-vinylpyrrolidone) nanocomposite, ECS J. Solid State Sci. Technol., 2020, vol. 9, p. 061007.

    Article  CAS  Google Scholar 

  35. Fazleeva, R.R., Nasretdinova, G.R., Gubaidullin, A.T., Evtyugin, V.G., and Yanilkin, V.V., The two-step electrosynthesis of nanocomposites of Ag, Au, and Pd nanoparticles with iron(II) oxide-hydroxide, New J. Chem., 2022, vol. 46, p. 2380.

    Article  CAS  Google Scholar 

  36. Fazleeva, R.R., Nasretdinova, G.R., Evtyugin, V.G., Gubaidullin, A.T., and Yanilkin, V.V., Electrosynthesis of nanocomposites of Ag, Au, Pd nanoparticles with aluminum(III), zinc(II), and titanium(IV) oxide-hydroxides, J. Solid State Electrochem., 2022, vol. 26, p. 2271.

    Article  CAS  Google Scholar 

  37. Sun, Q., Zhai, W., Hou, G., Feng, J., Zhang, L., Si, P., Guo, S., and Ci, L., In situ synthesis of a lithiophilic Ag-nanoparticles-decorated 3D porous carbon framework toward dendrite-free lithium metal anodes, ACS Sustainable Chem. Eng., 2018, vol. 6, p. 15219.

    Article  CAS  Google Scholar 

  38. Padbury, R.P., Halbur, J.C., Krommenhoek, P.J., Tracy, J.B., and Jur, J.S., Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates, Langmuir, 2015, vol. 31, p. 1135.

    Article  CAS  PubMed  Google Scholar 

  39. Landge, V.K., Sonawane, S.H., Manickam, S., Bhaskar Babu, G.U., and Boczkaj, G., Ultrasound-assisted wet-impregnation of Ag-Co nanoparticles on cellulose nanofibers: enhanced catalytic hydrogenation of 4-nitrophenol, J. Environ. Chem. Eng., 2021, vol. 9, p. 105719.

    Article  CAS  Google Scholar 

  40. Azetsu, A., Koga, H., Isogai, A., and Kitaoka, T., Synthesis and catalytic features of hybrid metal nanoparticles supported on cellulose nanofibers, Catalysts, 2011, vol. 1, p. 83.

    Article  CAS  Google Scholar 

  41. Khan, S.A., Khan, S.B., Farooq, A., and Asiri, A.M., A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation, Int. J. Biol. Macromol., 2019, vol. 130, p. 288.

    Article  CAS  PubMed  Google Scholar 

  42. Kaushik, M. and Moores, A., Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, Green Chem., 2016, vol. 18, p. 622.

    Article  CAS  Google Scholar 

  43. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Y.N., Zhukova, N.A., and Mamedov, V.A., Benzimidazo[1',2':1,2]quinolino[4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline – new mediator for electrosynthesizing metal nanoparticles, Russ. J. Electrochem., 2020, vol. 56, p. 646.

    Article  CAS  Google Scholar 

  44. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Y.N., Zhukova, N.A., Samigullina, A.I., Gubaidullin, A.T., and Mamedov, V.A., Mediated electrosynthesis and catalytic activity of metal nanoparticles nanocomposites with poly(N-vinylpyrrolidone) and nanocellulose, Russ. J. Electrochem., 2021, vol. 57, p. 30.

    Article  CAS  Google Scholar 

  45. Fazleeva, R.R., Nasretdinova, G.R., Osin, Y.N., Samigullina, A.I., Gubaidullin, A.T., and Yanilkin, V.V., An effective producing method of nanocomposites of Ag, Au, and Pd nanoparticles with poly(N-vinylpyrrolidone) and nanocellulose, Electrocatalysis, 2021, vol. 12, p. 225.

    Article  CAS  Google Scholar 

  46. Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Gubaidullin, A.T., and Yanilkin, V.V., Electrochemical method for producing globules of ultrasmall rhodium nanoparticles with poly(N-vinylpyrrolidone) bound to the surface of nanocellulose fibers, Izv. Ross. Akad. Nauk, Ser. Khim., 2021, vol. 70, p. 1908.

    CAS  Google Scholar 

  47. Reddy, K.R., Kumar, N.S., Reddy, P.S., Sreedhar, B., and Kantam, M.L., Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions, J. Mol. Catal. A: Chem., 2006, vol. 252, p. 12.

    Article  CAS  Google Scholar 

  48. Lam, E., Hrapovic, S., Majid, E., Chong, J.H., and Luong, J.H.T., Catalysis using gold nanoparticles decorated on nanocrystalline cellulose, Nanoscale, 2012, vol. 4, no. 3, p. 997.

    Article  CAS  PubMed  Google Scholar 

  49. Tang, J., Sisler, J., Grishkewich, N., and Tam, K.C., Functionalization of cellulose nanocrystals for advanced applications, J. Colloid Interface Sci., 2017, vol. 494, p. 397.

    Article  CAS  PubMed  Google Scholar 

  50. Drogat, N., Granet, R., Sol, V., Memmi, A., Saad, N., Koerkamp, C.K., Bressollier, P., and Krausz, P., Antimicrobial silver nanoparticles generated on cellulose nanocrystals, J. Nanopart. Res., 2011, vol. 13, p. 1557.

    Article  CAS  Google Scholar 

  51. Berndt, S., Wesarg, F., Wiegand, C., Kralisch, D., and Müller, F.A., Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles, Cellulose, 2013, vol. 20, p. 771.

    Article  CAS  Google Scholar 

  52. Schlesinger, M., Giese, M., Blusch, L.K., Hamad, W.Y., and MacLachlan, M.J., Chiral nematic vellulose-gold nanoparticle vomposites from mesoporous photonic cellulose, Chem. Commun., 2015, vol. 51, p. 530.

    Article  CAS  Google Scholar 

  53. Liu, H., Wang, D., Shang, S., and Song, Z., Synthesis and characterization of Ag–Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites, Carbohydr. Polym., 2011, vol. 83, p. 38.

    Article  CAS  Google Scholar 

  54. Zhang, T., Wang, W., Zhang, D., Zhang, X., Ma, Y., Zhou, Y., and Qi, L., Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing, Adv. Funct. Mater., 2010, vol. 20, p. 1152.

    Article  CAS  Google Scholar 

  55. Kokorekin, V.A., Gamayunova, A.V., Yanilkin, V.V., and Petrosyan, V.A., Mediated electrochemical synthesis of copper nanoparticles in solution bulk, Izv. Ross. Akad. Nauk, Ser. Khim., 2017, no. 11, p. 2035.

  56. Silva, A., Rodrigues, T., Haigh, S.J., and Camargo, P., Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications, Chem. Commun., 2017, vol. 53, p. 7135.

    Article  Google Scholar 

  57. Papaderakis, A., Mintsouli, I., Georgieva, J., and Sotiropoulos, S., Electrocatalysts prepared by galvanic replacement, Catalysts, 2017, vol. 7, p. 80.

    Article  Google Scholar 

  58. Hosseini, S.R., Ghasemi, S., and Ghasemi, S.A., Fabrication and performance evaluation of Pd–Cu nanoparticles for hydrogen evolution reaction, Chem. Select., 2019, vol. 4, p. 6854.

    CAS  Google Scholar 

  59. Teng, X., Wang, Q., Liu, P., Han, W., Frenkel, A.I., Wen, W., Marinkovic, N., Hanson, J.C., and Rodriguez, J.A., Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction, J. Am. Chem. Soc., 2008, vol. 130, p. 1093.

    Article  CAS  PubMed  Google Scholar 

  60. Nasretdinova, G.R., Fazleeva, R.R., Osin, Yu.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen-mediated electrochemical synthesis of silver nanoparticles via the reduction of AgCl nanospheres stabilized by cetyltrimethylammonium chloride, Russ. J. Electrochem., 2017, vol. 53, no. 1, pp. 25–39.

    Article  CAS  Google Scholar 

  61. Deng, D., Cheng, Y., Jin, Y., Qi, T., and Xiao, F., Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution, J. Mater. Chem., 2012, vol. 22, p. 23989.

    Article  CAS  Google Scholar 

  62. Amendola, V. and Meneghetti, M., Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 3805.

    Article  CAS  PubMed  Google Scholar 

  63. Usman, M.S., Ibrahim, N.A., Shameli, K., Zainuddin, N., and Yunus, W.M.Z.W., Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods, Molecules, 2012, vol. 17, p. 14928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lara, P. and Philippot, K., The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview, Catal. Sci. Technol., 2014, vol. 4, p. 2445.

    Article  CAS  Google Scholar 

  65. Babji, P. and Rao, V.L., Catalytic reduction of 4-nitrophenol to 4-aminophenol by using Fe2O3–Cu2O–TiO2 nanocomposite, Int. J. Chem. Stud., 2016, vol. 4, p. 123.

    CAS  Google Scholar 

  66. Pradhan, N., Pal, A., and Pal, T., Silver nanoparticle catalyzed reduction of aromatic nitro compounds, Colloids Surf. A, 2002, vol. 196, p. 247.

    Article  CAS  Google Scholar 

  67. Ma, T., Yang, W., Liu, S., Zhang, H., and Liang, F., A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars, Catalysts, 2017, vol. 7, p. 38.

    Article  Google Scholar 

Download references

Funding

This study is partially supported by the Russian Foundation for Basic Research (grant no. 20-03-00007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. R. Fazleeva or V. V. Yanilkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Delivered at the 20th All-Russian Meeting “Electrochemistry of Organic Compounds” (EKhOS-2022), Novocherkassk, October 18–22, 2022.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazleeva, R.R., Nasretdinova, G.R., Evtyugin, V.G. et al. Electrosynthesis of Nanocomposites of Catalytic Active Pd–Cu and Pd–Au Bimetallic Nanoparticles with Poly(N-vinylpyrrolidone) and Nanocellulose. Russ J Electrochem 59, 867–886 (2023). https://doi.org/10.1134/S102319352311006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352311006X

Keywords:

Navigation