Skip to main content
Log in

Prerequisites for Development of Electrochemical Planar Sensor Based on RGO–PPD–SiW Composite for Determining Isoniazid Content in Biological Liquids

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A new redox-active composite material based on reduced graphene oxide (RGO), poly-o-phenylenediamine (PPD), and silicotungstic acid (SiW) is studied. The SEM data showed an abrupt decrease in the content of oxygen atoms in the composite as compared to pure graphene oxide (GO). This is associated with its reduction to RGO in the course of RGO–PPD–SiW synthesis. A combination of RGO conductivity and redox catalysis due to the electroactive components (PPD and SiW) enables one to develop various sensors by applying RGO–PPD–SiW onto planar electrodes (screen-printed carbon electrodes, SPCE). In this work, the possibility of developing a sensor for the content of antituberculous antibiotic isoniazid (isonicotinic acid hydrazide C6H7N3O, INAH) is studied. Using the CVA method, it is shown that the concentration dependence of isoniazid oxidation current is linear. The electrocatalytic behavior of the composite during the isoniazid oxidation is also supported by the impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.

Notes

  1. www.graphenox-ru.com.

  2. “Electrochemical Instruments”, Chernogolovka, Moscow region, Russia, http://potentiostat.ru

REFERENCES

  1. Simões, F.R. and Xavier, M.G., Electrochemical Sensors, in: Nanoscience and Its Applications, 2017, ISBN 978-0-323-49780-0.

  2. Bobacka, J., Electrochemical sensors for real-world applications, J. Solid State Electrochem., 2020, vol. 24, p. 2039. https://doi.org/10.1007/s10008-020-04700-4

    Article  CAS  Google Scholar 

  3. Murthy, H.C.A., Kelele, K.G., Ravikumar, C.R., Nagaswarupa, H.P., Tadesse, A., and Desalegn, T., Graphene-supported nanomaterials as electrochemical sensors: A mini review, Results in Chem., 2021, vol. 3, p. 100131. https://doi.org/10.1016/j.rechem.2021.100131

    Article  CAS  Google Scholar 

  4. Roy, S., Soin, N., Bajpai, R., Misra, D.S., McLaughlin, J.A., and Roy, S.S., Graphene oxide for electrochemical sensing applications, J. Mater. Chem., 2011, vol. 21, p. 14725. https://doi.org/10.1039/C1JM12028J

    Article  CAS  Google Scholar 

  5. Shiri, S., Pajouheshpoor, N., Khoshsafar, H., Amidi, S., and Bagheri, H., An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@CuFe2O4 nanocomposite modified carbon paste electrode, New J. Chem., 2017, vol. 41, p.15564. https://doi.org/10.1039/C7NJ03029K

    Article  CAS  Google Scholar 

  6. Tajik, S., Dourandish, Z., Nejad, F.G., Afshar, A.A., and Beitollahi, H., Voltammetric determination of isoniazid in the presence of acetaminophen utilizing MoS2-nanosheet-modified screen-printed electrode, Micromachines, 2022, vol. 13, p. 369. https://doi.org/10.3390/mi13030369

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zargar, B., Ghanavatizadeh, Z., and Hatamie, A., Electrochemical study and sensing of isoniazid in pharmaceutical with modified carbon paste electrode with nanoceria particles as an effective catalytic amplifier, Anal. Bioanal. Electrochem., 2019, vol. 11, p. 727.

    CAS  Google Scholar 

  8. Botelho, C.N., Pavão, D.P., Damos, F.S., and Luz, R. de C.S, Photoelectrochemical sensor for isoniazid: application in drugs used in the treatment of tuberculosis, Electroanalysis, 2021, vol. 33, p. 1936. https://doi.org/10.1002/elan.202100023

    Article  CAS  Google Scholar 

  9. Bergamini, M.F., Santos, D.P., and Zanoni, M.V.B., Determination of isoniazid in human urine using screen-printed carbon electrode modified with poly-L-histidine, Bioelectrochemistry, 2010, vol. 77, p. 133. https://doi.org/10.1016/j.bioelechem.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  10. Si, X., Jiang, L., Wang X., Ding, Y., and Luoa, L., Determination of isoniazid on cysteic acid/graphene modified glassy carbon electrode, Anal. Methods, 2015, vol. 7, p. 793. https://doi.org/10.1039/C4AY02013H

    Article  CAS  Google Scholar 

  11. Qian, L., Thiruppathi, A.R., Zalm, J., and Chen, A., Graphene oxide-based nanomaterials for the electrochemical sensing of isoniazid, ACS Appl. Nano Mater., 2021, vol. 4, p. 3696. https://doi.org/10.1021/acsanm.1c00178

    Article  CAS  Google Scholar 

  12. Lima, K.C.M.S., Santos, A.C.F., Fernandes, R.N., Damos, F.S., and Luz, R. de C.S., Development of a novel sensor for isoniazid based on 2,3-dichloro-5,6-dicyano-p-benzoquinone and graphene: Application in drug samples utilized in the treatment of tuberculosis, Microchem. J., 2016, vol. 128, p. 226. https://doi.org/10.1016/j.microc.2016.04.024

    Article  CAS  Google Scholar 

  13. Pisarevskaya, E.Yu. and Efimov, O.N., Graphene oxide as a basis for molecular design, Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 468. https://doi.org/10.1134%2FS2070205119030213

  14. Pisarevskaya, E.Yu., Klyuev, A.L., Averin, A.A., Gorbunov, A.M., and Efimov, O.N., One-pot electrosynthesis and physicochemical properties of multifunctional material based on graphene oxide, poly-o-phenylenediamine, and silicotungstic acid, J. Solid. State Electrochem., 2020, vol. 25, p. 859. https://doi.org/10.1007/s10008-020-04859-w

    Article  CAS  Google Scholar 

  15. Pisarevskaya, E.Yu., Klyuev, A.L., and Efimov, O.N., Comparison of electrochemical behavior of composites based on graphene oxide, poly-o-phenylenediamine, and heteropolyacids, Polym. Adv. Technol., 2022, vol. 34, p. 1137. https://doi.org/10.1002/pat.5587

    Article  CAS  Google Scholar 

  16. Pisarevskaya, E.Yu., Kolesnichenko, I.I., Averin, A.A., Gorbunov, A.M., and Efimov, O.N., A novel multifunctional composite based on reduced graphene oxide, poly-o-phenylenediamine and silicotungstic acid, Synth. Metals, 2020, vol. 270, p. 116596. https://doi.org/10.1016/j.synthmet.2020.116596

    Article  CAS  Google Scholar 

  17. Lv, Y., Kong, A., Zhang, H., Yang, W., Chen, Y., Liu, M., Fu, Y., Zhang, J., and Li, W., Electrocatalytic oxidation of toluene into benzaldehyde based on molecular oxygen activation over oxygen vacancy of heteropoly acid, Appl. Surf. Sci., 2022, vol. 599, p. 153916. https://doi.org/10.1016/j.apsusc.2022.153916

    Article  CAS  Google Scholar 

  18. Zakrzewska, B., Jakubów-Piotrowska, K., Gralec, B., Kowalewska, B., and Miecznikowski, K., Multifunctional material composed of cesium salt of Keggin-type heteropolytungstate and PtRh/Vulcan nanoparticles for electrochemical oxidation of 2-propanol in acidic medium, Electrocatalysis, 2020, vol. 11, p. 454. https://doi.org/10.1007/s12678-020-00606-x

    Article  CAS  Google Scholar 

  19. Yu, S., Zhao, X., Su, G., Wang, Y., Wang, Z., Han, K., and Zhu, H., Synthesis and electrocatalytic performance of a P–Mo–V Keggin heteropolyacid modified Ag@Pt/MWCNTs catalyst for oxygen reduction in proton exchange membrane fuel cell, Ionics, 2019, vol. 25, p. 5141. https://doi.org/10.1007/s11581-019-03090-6

    Article  CAS  Google Scholar 

  20. Oliveira, P.R., Oliveira, M.M., Zarbin, A.J.G., Marcolino-J., L.H., and Bergamini, M.F., Flow injection amperometric determination of isoniazid using a screen-printed carbon electrode modified with silver hexacyanoferrates nanoparticles, Sens. Actuators B Chem., 2012, vol. 171–172, p. 795. https://doi.org/10.1016/j.snb.2012.05.073

    Article  CAS  Google Scholar 

  21. Couto, R.A.S., Lima, J.L.F.C., and Quinaz, M.B., Screen-printed electrode based electrochemical sensor for the detection of isoniazid in pharmaceutical formulations and biological fluids, Int. J. Electrochem. Sci., 2015, vol. 10, p. 8738.

    CAS  Google Scholar 

  22. Hung, Y.F., Cheng, C., Huang, C.K., Yang, C.-R., and Shih-Feng Tseng, S.-F., Investigation of electrochemical reduction effects on graphene oxide powders for high-performance supercapacitors, Int. J. Adv. Manuf. Technol., 2021, vol. 113, p. 1203. https://doi.org/10.1007/s00170-020-06578-y

    Article  Google Scholar 

  23. Pisarevskaya, E.Yu, Klyuev, A.L., Efimov, O.N., and Andreev, V.N., Electrochemical behavior of novel composite based on reduced graphene oxide, poly-o-phenylenediamine, and silicotungstic acid, Russ. J. Electrochem., 2021, vol. 57, p. 921. https://doi.org/10.1134/s1023193521090044

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed with support of the Ministry of Science and Higher Education of Russian Federation, State Program for Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, no. AAAA-A19-119041890032-6 and State Program for Institute of Problems of Chemical Physics, Russian Academy of Sciences, no. AAAA-A19-119071190044-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Pisarevskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Kabanova

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, June 27–July 7, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisarevskaya, E.Y., Klyuev, A.L., Efimov, O.N. et al. Prerequisites for Development of Electrochemical Planar Sensor Based on RGO–PPD–SiW Composite for Determining Isoniazid Content in Biological Liquids. Russ J Electrochem 59, 213–221 (2023). https://doi.org/10.1134/S1023193523030102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523030102

Keywords:

Navigation