Skip to main content
Log in

Oxygen Reduction Reaction on Chromium Carbide-Derived Carbons

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Chromium carbide-derived carbons were synthesized at various temperatures as possible support materials for polymer electrolyte membrane fuel cell catalyst. The physicochemical characterization data demonstrated that synthesis temperature applied affects significantly the carbon crystallographic structure, including graphitization ratio, and micropore and mesopore volume values. The electrochemical measurements in KOH and HClO4 revealed capacitive behaviour of materials and suitability of studied carbons as catalyst supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Energy Statistics – an Overview, Eurostat, 2019. https://ec.europa.eu/eurostat/statistics-explained/index. php?title=Energy_statistics_-_an_overview. Accessed July 1, 2020.

  2. The Fuel Cell Industry Review, E4tech, 2019. https:// www.e4tech.com/news/2018-fuel-cell-industry-review- 2019-the-year-of-the-gigawatt.php. Accessed July 1, 2020.

  3. Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B – Environ., 2009, vol. 88, p. 1.

    Article  CAS  Google Scholar 

  4. Samad, S., Loh, K.S., Wong, W.Y., Lee, T.K., Sunarso, J., Chong, S.T., and Wan Daud, W.R., Carbon and non-carbon support materials for platinum-based catalysts in fuel cells, Int. J. Hydrogen Energy, 2018, vol. 43, p. 7823.

    Article  CAS  Google Scholar 

  5. Corti, H., Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications, New York: Springer, 2013.

    Google Scholar 

  6. Sepp, S., Vaarmets, K., Nerut, J., Tallo, I., Tee, E., Kurig, H., Aruvali, J., Kanarbik, R., and Lust, E., Enhanced stability of symmetrical polymer electrolyte membrane fuel cell single cells based on novel hierarchical microporous-mesoporous carbon supports, J. Solid State Electrochem., 2016, vol. 21, no. 4, p. 1.

    Google Scholar 

  7. Sepp, S., Vaarmets, K., Nerut, J., Tallo, I., Tee, E., Kurig, H., Aruvali, J., Kanarbik, R., and Lust, E., Performance of polymer electrolyte membrane fuel cell single cells prepared using hierarchical microporous-mesoporous carbon supported Pt nanoparticles activated catalysts, Electrochim. Acta, 2016, vol. 203, p. 221.

    Article  CAS  Google Scholar 

  8. Vaarmets, K., Nerut, J., Sepp, S., Kanarbik, R., and Lust, E., Accelerated durability tests of molybdenum carbide derived carbon based Pt catalysts for PEMFC, J. Electrochem. Soc., 2017, vol. 164, p. F338.

    Article  CAS  Google Scholar 

  9. Lust, E., Vaarmets, K., Nerut, J., Tallo, I., Valk, P., Sepp, S., and Härk, E., Influence of specific surface area and microporosity-mesoporosity of pristine and Pt-nanoclusters modified carbide derived carbon electrodes on the oxygen electroreduction, Electrochim. Acta, 2014, vol. 140, p. 294.

    Article  CAS  Google Scholar 

  10. Tae Hwang, J. and Shik Chung, J., The morphological and surface properties and their relationship with oxygen reduction activity for platinum-iron electrocatalysts, Electrochim. Acta, 1993, vol. 38, p. 2715.

    Article  Google Scholar 

  11. Sharma, S. and Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts—a review, J. Power Sources, 2012, vol. 208, p. 96.

    Article  CAS  Google Scholar 

  12. Kim, M., Soo Kim, H., Jong Yoo, S., Cheol Yoo, W., and Sung, Y.-E., The role of pre-defined microporosity in catalytic site formation for the oxygen reduction reaction in iron- and nitrogen-doped carbon materials, J. Mater. Chem. A, 2017, vol. 5, p. 4199.

    Article  CAS  Google Scholar 

  13. Liang, C., Li, Z., and Dai, S., Mesoporous carbon materials: synthesis and modification, Angew. Chem. Int. Ed., 2008, vol. 47, p. 3696.

    Article  CAS  Google Scholar 

  14. Jänes, A., Thomberg, T., Kurig, H., and Lust, E., Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide, Carbon, 2009, vol. 47, p. 23.

    Article  CAS  Google Scholar 

  15. Härk, E., Nerut, J., Vaarmets, K., Tallo, I., Kurig, H., Eskusson, J., Kontturi, K., and Lust, E., Electrochemical impedance characteristics and electroreduction of oxygen at tungsten carbide derived micromesoporous carbon electrodes, J. Electroanal. Chem., 2013, vol. 689, p. 176.

    Article  CAS  Google Scholar 

  16. Jänes, A., Thomberg, T., and Lust, E., Synthesis and characterisation of nanoporous carbide-derived carbon by chlorination of vanadium carbide, Carbon, 2007, vol. 45, p. 2717.

    Article  CAS  Google Scholar 

  17. Tallo, I., Thomberg, T., Kurig, H., Kontturi, K., Jänes, A., and Lust, E., Novel micromesoporous carbon materials synthesized from tantalum hafnium carbide and tungsten titanium carbide, Carbon, 2014, vol. 67, p. 607.

    Article  CAS  Google Scholar 

  18. Schlange, A., dos Santos, A.R., Hasse, B., Etzold, B.J.M., Kunz, U., and Turek, T., Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application, J. Power Sources, 2012, vol. 199, p. 22.

    Article  CAS  Google Scholar 

  19. Gogotsi, Y., Nikitin, A., Ye, H., Zhou, W., Fischer, J.E., Yi, B., Foley, H.C., and Barsoum, M.W., Nanoporous carbide-derived carbon with tunable pore size, Nat. Mater., 2003, vol. 2, p. 591.

    Article  CAS  PubMed  Google Scholar 

  20. Gogotsi, Y., Portet, C., Osswald, S., Simmons, J.M., Yildirim, T., Laudisio, G., and Fischer, J.E., Importance of pore size in high-pressure hydrogen storage by porous carbons, Int. J. Hydrogen Energy, 2009, vol. 34, p. 6314.

    Article  CAS  Google Scholar 

  21. Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., and Taberna, P.L., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 2006, vol. 313, p. 1760.

    Article  CAS  PubMed  Google Scholar 

  22. Yushin, G., Hoffman, E.N., Barsoum, M.W., Gogotsi, Y., Howell, C.A., Sandeman, S.R., Phillips, G.J., Lloyd, A.W., and Mikhalovsky, S.V., Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines, Biomaterials, 2006, vol. 27, p. 5755.

    Article  CAS  PubMed  Google Scholar 

  23. Becker, P., Glenk, F., Kormann, M., Popovska, N., and Etzold, B.J.M., Chlorination of titanium carbide for the processing of nanoporous carbon: a kinetic study, Chem. Eng. J., 2010, vol. 159, p. 236.

    Article  CAS  Google Scholar 

  24. Tallo, I., Thomberg, T., Kurig, H., Jänes, A., Kontturi, K., and Lust, E., Supercapacitors based on carbide-derived carbons synthesised using HCl and Cl2 as reactants, J. Solid State Electron., 2013, vol. 17, p. 19.

    Article  CAS  Google Scholar 

  25. Batisse, N., Guérin, K., Dubois, M., Hamwi, A., Spinelle, L., and Tomasella, E., Fluorination of silicon carbide thin films using pure F2 gas or XeF2, Thin Solid Films, 2010, vol. 518, p. 6746.

    Article  CAS  Google Scholar 

  26. Portet, C., Kazachkin, D., Osswald, S., Gogotsi, Y., and Borguet, E., Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons, Thermochim. Acta, 2010, vol. 497, p. 137.

    Article  CAS  Google Scholar 

  27. Xu, J., Zhang, R., Wang, J., Ge, S., and Wen, F., Hollow carbon onions with larger lattice spacing obtained by chlorination of the ball-milled SiC, Mater. Lett., 2012, vol. 88, p. 168.

    Article  CAS  Google Scholar 

  28. Xu, J., Zhang, R., Wang, J., Ge, S., Zhou, H., Liu, Y., and Chen, P., Effective control of the microstructure of carbide-derived carbon by ball-milling the carbide precursor, Carbon, 2013, vol. 52, p. 499.

    Article  CAS  Google Scholar 

  29. Kormann, M. and Popovska, N., Processing of carbide-derived carbons with enhanced porosity by activation with carbon dioxide, Microporous Mesoporous Mater., 2010, vol. 130, p. 167.

    Article  CAS  Google Scholar 

  30. Thomberg, T., Kurig, H., Jänes, A., and Lust, E., Mesoporous carbide-derived carbons prepared from different chromium carbides, Microporous Mesoporous Mater., 2011, vol. 141, p. 88.

    Article  CAS  Google Scholar 

  31. Hoffman, E.N., Yushin, G., El-Raghy, T., Gogotsi, Y., and Barsoum, M.W., Micro and mesoporosity of carbon derived from ternary and binary metal carbides, Microporous Mesoporous Mater., 2008, vol. 112, p. 526.

    Article  CAS  Google Scholar 

  32. Vaarmets, K., Valk, P., Nerut, J., Tallo, I., Aruväli, J., Sepp, S., and Lust, E., Rotating disk electrode study of carbon supported Pt-nanoparticles synthesized using microwave-assisted method, ECS Trans., 2017, vol. 80, p. 743.

    Article  CAS  Google Scholar 

  33. Valk, P., Nerut, J., Tallo, I., Tee, E., Romann, T., and Lust, E., Influence of molybdenum carbide additive on the oxygen reduction reaction kinetics at molybdenum carbide derived carbon electrode, ECS Meet. Abstr., 2014, vol. MA2014-01, p. 1156.

  34. Taleb, M., Nerut, J., Tooming, T., Thomberg, T., and Lust, E., Oxygen electroreduction on platinum nanoparticles activated electrodes deposited onto D-glucose derived carbon support in 0.1 M KOH, J. Electrochem. Soc., 2016, vol. 163, p. F1251.

    Article  CAS  Google Scholar 

  35. Taleb, M., Nerut, J., Tooming, T., Thomberg, T., Jänes, A., and Lust, E., Oxygen electroreduction on platinum nanoparticles deposited onto D-glucose derived carbon, J. Electrochem. Soc., 2015, vol. 162, p. F651.

    Article  CAS  Google Scholar 

  36. Kinoshita, D.K., Electrochemical Oxygen Technology, New York: John Wiley & Sons, 1992.

    Google Scholar 

  37. Hirota, K., Mitani, K., Yoshinaka, M., and Yamaguchi, O., Simultaneous synthesis and consolidation of chromium carbides (Cr3C2, Cr7C3 and Cr23C6) by pulsed electric-current pressure sintering, Mater. Sci. Eng. A, 2005, vol. 399, p. 154.

    Article  CAS  Google Scholar 

  38. Ravikovitch, P.I. and Neimark, A.V., Characterization of nanoporous materials from adsorption and desorption isotherms, Colloids Surf. A, 2001, vols. 187–188, p. 11.

    Article  Google Scholar 

  39. Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 1938, vol. 60, p. 309.

    Article  CAS  Google Scholar 

  40. Jagiello, J. and Olivier, J.P., Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation, Adsorption, 2013, vol. 19, p. 777.

    Article  CAS  Google Scholar 

  41. Jagiello, J. and Olivier, J.P., D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation, Carbon, 2013, vol. 55, p. 70.

    Article  CAS  Google Scholar 

  42. de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., and Osinga, Th.J., Thet-curve of multimolecular N2-adsorption, J. Colloid Interface Sci., 1966, vol. 21, p. 405.

    Article  CAS  Google Scholar 

  43. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Dordrecht: Springer Science & Business Media, 2006.

    Google Scholar 

  44. Rouquerol, J., Llewellyn, P., and Rouquerol, F., Is the BET equation applicable to microporous adsorbents?, Stud. Surf. Sci. Catal., 2007, vol. 160, p. 49.

    Article  CAS  Google Scholar 

  45. Garsany, Y., Baturina, O.A., Swider-Lyons, K.E., and Kocha, S.S., Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction, Anal. Chem., 2010, vol. 82, p. 6321.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, Z., Zheng, H., Wang, Y., Mao, S., Niu, J., Chen, Y., and Shang, M., Synthesis of chromium carbide (Cr3C2) nanopowders by the carbonization of the precursor, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, p. 614.

    Article  CAS  Google Scholar 

  47. Schuepfer, D.B., Badaczewski, F., Guerra-Castro, J.M., Hofmann, D.M., Heiliger, C., Smarsly, B., and Klar, P.J., Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy, Carbon, 2020, vol. 161, p. 359.

    Article  CAS  Google Scholar 

  48. González-García, P., Navarro-Suárez, A.M., Carretero-González, J., Urones-Garrote, E., Ávila-Brande, D., and Otero-Díaz, L.C., Nanostructure, porosity and electrochemical performance of chromium carbide derived carbons, Carbon, 2015, vol. 85, p. 38.

    Article  CAS  Google Scholar 

  49. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U., Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon, 2005, vol. 43, p. 1731.

    Article  CAS  Google Scholar 

  50. Ribeiro-Soares, J., Oliveros, M.E., Garin, C., David, M.V., Martins, L.G.P., Almeida, C.A., Martins-Ferreira, E.H., Takai, K., Enoki, T., Magalhães-Paniago, R., Malachias, A., Jorio, A., Archanjo, B.S., Achete, C.A., and Cançado, L.G., Structural analysis of polycrystalline graphene systems by Raman spectroscopy, Carbon, 2015, vol. 95, p. 646.

    Article  CAS  Google Scholar 

  51. Ferrari, A. and Robertson, J., Interpretation of raman spectra of disordered and amorphous carbon, Phys. Rev. B—Condensed Matter Mater. Phys., 2000, vol. 61, p. 14095.

    Article  CAS  Google Scholar 

  52. McCreery, R.L., Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev., 2008, vol. 108, p. 2646.

    Article  CAS  PubMed  Google Scholar 

  53. Bannov, A.G., Popov, M.V., and Kurmashov, P.B., Thermal analysis of carbon nanomaterials: advantages and problems of interpretation, J. Therm. Anal. Calorim., 2020, vol. 142, p. 349.

    Article  CAS  Google Scholar 

  54. Nian, Y.-R. and Teng, H., Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors, J. Electroanal. Chem., 2003, vol. 540, p. 119.

    Article  CAS  Google Scholar 

  55. Frackowiak, E. and Béguin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, vol. 39, p. 937.

    Article  CAS  Google Scholar 

  56. Marković, N.M., Gasteiger, H.A., and Ross, P.N., Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: Rotating ring Disk Pt(hkl) studies, J. Phys. Chem., 1996, vol. 100, p. 6715.

    Article  Google Scholar 

  57. Conway, B.E., Birss, V., and Wojtowicz, J., The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources, 1997, vol. 66, p. 1.

    Article  CAS  Google Scholar 

  58. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.

    Google Scholar 

  59. Taylor, R.J. and Humffray, A.A., Electrochemical studies on glassy carbon electrodes: II. Oxygen reduction in solutions of high pH (pH>10), J. Electroanal. Chem. Interfacial Electrochem., 1975, vol. 64, p. 63.

    Article  CAS  Google Scholar 

  60. Lipkowski, J. and Ross, P.N., Electrocatalysis, New York: John Wiley & Sons, 1998.

    Google Scholar 

  61. Paulus, U.A., Schmidt, T.J., Gasteiger, H.A., and Behm, R.J., Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study, J. Electroanal. Chem., 2001, vol. 495, p. 134.

    Article  CAS  Google Scholar 

  62. Higuchi, E., Uchida, H., and Watanabe, M., Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode, J. Electroanal. Chem., 2005, vol. 583, p. 69.

    Article  CAS  Google Scholar 

  63. Denuault, G., Sosna, M., and Williams, K.-J., Classical experiments, in Handbook of Electrochemistry, Zoski, C.G., Ed., Amsterdam: Elsevier, 2007.

    Google Scholar 

  64. Marković, N.M., Gasteiger, H.A., Grgur, B.N., and Ross, P.N., Oxygen reduction reaction on Pt(111): effects of bromide, J. Electroanal. Chem., 1999, vol. 467, p. 157.

    Article  Google Scholar 

  65. Gubbins, K.E. and Walker, R.D., The solubility and diffusivity of oxygen in electrolytic solutions, J. Electrochem. Soc., 1965, vol. 112, p. 469.

    Article  CAS  Google Scholar 

  66. Yeager, E., Electrocatalysts for O2 reduction, Electrochim. Acta, 1984, vol. 29, p. 1527.

    Article  CAS  Google Scholar 

  67. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, J. Mol. Catal., 1986, vol. 38, p. 5.

    Article  CAS  Google Scholar 

  68. Taylor, R.J. and Humffray, A.A., Electrochemical studies on glassy carbon electrodes: III. Oxygen reduction in solutions of low pH (pH < 10), J. Electroanal. Chem. Interfacial Electrochem., 1975, vol. 64, p. 85.

    Article  CAS  Google Scholar 

  69. Shen, A., Zou, Y., Wang, Q., Dryfe, R.A.W., Huang, X., Dou, S., Dai, L., and Wang, S., Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more sctive than the basal plane, Angew. Chem. Int. Ed., 2014, vol. 53, p. 10804.

    Article  CAS  Google Scholar 

  70. Retter, U. and Lohse, H., Electrochemical impedance spectroscopy, in: Electroanalytical Methods: Guide to Experiments and Applications, Scholz, F., Bond, A.M., Compton, R.G., Fiedler, D.A., Inzelt, G., Kahlert, H., Komorsky-Lovrić, Š., Lohse, H., Lovrićc, M., Marken, F., Neudeck, A., Retter, U., Scholz, F., and Stojek, Z., Eds., Berlin: Springer, 2010, p. 159.

    Google Scholar 

  71. Zhao, Q., Wang, X., Liu, J., Wang, H., Zhang, Y., Gao, J., Liu, J., and Lu, Q., Surface modification and performance enhancement of carbon derived from chromium carbide for supercapacitor applications, J. Electrochem. Soc., 2015, vol. 162, p. A845.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the EU through the European Regional Development Fund under project TK 141 “Advanced materials and high-technology devices for energy recuperation systems” (grant no. 2014‑2020.4.01.15‑0011); and by the Estonian Research Council (grant number PUT PRG 676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lust.

Ethics declarations

Authors declare that there is no conflict of interest.

Additional information

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.Q., Nerut, J., Kasuk, H. et al. Oxygen Reduction Reaction on Chromium Carbide-Derived Carbons. Russ J Electrochem 58, 781–797 (2022). https://doi.org/10.1134/S1023193522090130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522090130

Keywords:

Navigation