Skip to main content
Log in

Structure and Corrosion Behaviour of Al–Nb Alloys

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Effects of niobium content on the microstructure and corrosion were investigated on various Al‒x% Nb alloys (x: 10, 20, 25, 30, 40, and 50 wt %) prepared by high-frequency electromagnetic fusion melting and solidification at room temperature. Microstructural characterization was carried out by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Vickers microhardness, and scanning electron microscopy (SEM). Electrochemical tests in 3.5 wt % NaCl solution, via potentiodynamic polarization curves and impedance spectroscopy (EIS) was accomplished on both as-cast and annealed alloys. All of the results highlight the role played by the intermetallic trialuminide compound Al3Nb dispersed within the matrix consisting of α-Al solid solution. The volume fraction of the Al3Nb intermetallic phase controls the mechanical properties through the microhardness acting as reinforcement of the α-Al matrix in the manner of a composite material. It also acts as a precaution against corrosion by the pitting of aluminum. This effect naturally varies according to the niobium content and the distribution of the intermetallic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 13.
Fig. 13.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Audebert, F., Galano, M., and Saporiti, F., The use of Nb in rapid solidified Al alloys and composites, J. Alloys Compd., 2014, vol. 615, p. 621.

    Article  CAS  Google Scholar 

  2. Schwarz, H.G., Briem, S., and Zapp, P., Future carbon dioxide emissions in the global material flow of primary aluminium, Energy, 2001, vol. 26, p. 775.

    Article  CAS  Google Scholar 

  3. Hirsch, J., Aluminium in innovative light-weight car design, Mater. Trans., 2011, vol. 52, p. 818.

    Article  CAS  Google Scholar 

  4. Toros, S., Ozturk, F., and Kacar, I., Review of warm forming of aluminum–magnesium alloys, J. Mater. Process. Technol., 2008, vol. 207, p. 1.

    Article  CAS  Google Scholar 

  5. Yasakau, K.A., Zheludkevich, M.L., and Ferreira, M.G.S., Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection, in Intermetallic Matrix Composites, Mitra, R., Ed., Woodhead Publ., 2018, p. 425.

    Google Scholar 

  6. Ujah, C.O., Popoola, A.P.I., Popoola, O.M., and Aigbodion, V.S., Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al–Nb nanocomposite, Int. J. Adv. Manufact. Technol., 2019, vol. 101, p. 2275.

    Article  Google Scholar 

  7. Pramod, S.L., Bakshi, S.R., and Murty, B.S., Aluminum-based cast in situ composites: a review, J. Mater. Eng. Perform., 2015, vol. 24, p. 2185.

    Article  CAS  Google Scholar 

  8. Di Franco, F., Santamaria, M., Di Quarto, F., La Mantia, F., de Sá, A.I., and Rangel, C.M., Dielectric properties of Al–Nb amorphous mixed oxides, ECS J. Solid State Sci. Technol., 2013, vol. 2, p. 205.

    Article  CAS  Google Scholar 

  9. Saidman, S.B., Garcia, S.G., and Bessone, J.B., Electrochemical behaviour of Al–In alloys in chloride solutions, J. Appl. Electrochem., 1995, vol. 25, p. 252.

    Article  CAS  Google Scholar 

  10. Salinas, D.R., Influence of alloying elements and microstructure on aluminium sacrificial anode performance: case of Al±Zn, J. Appl. Electrochem., 1999, vol. 29, p. 1063.

    Article  CAS  Google Scholar 

  11. Shayeb, H.A.E., Effect of gallium ions on the electrochemical behaviour of Al, Al±Sn, Al±Zn and Al±Zn±Sn alloys in chloride solutions, Corros. Sci., 2001, vol. 43, p. 643.

    Article  Google Scholar 

  12. Gudić, S., Smoljko, I., and Kliškić, M., Electrochemical behaviour of aluminium alloys containing indium and tin in NaCl solution, Mater. Chem. Phys., 2010, vol. 121, p. 561.

    Article  CAS  Google Scholar 

  13. Shibli, S.M.A., Jabeera, B., and Manu, R., Development of high performance aluminium alloy sacrificial anodes reinforced with metal oxides, Mater. Lett., 2007, vol. 61, p. 3000.

    Article  CAS  Google Scholar 

  14. Mostaan, H., Karimzadeh F., and Abbasi, M.H., Thermodynamic analysis of nanocrystalline and amorphous phase formation in Nb–Al system during mechanical alloying, Powder Metall., 2012, vol. 55, p. 142.

    Article  CAS  Google Scholar 

  15. Gauthier, V., Bernard, F., Gaffet, E., Vrel, D., Gailhanou, M., and Larpin, J.P., Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction, Intermetallics, 2002, vol. 10, p. 377.

    Article  CAS  Google Scholar 

  16. Almeida, A., Petrov, P., Nogueir I., and Vilar, R., Structure and properties of Al–Nb alloys produced by laser surface alloying, Mater. Sci. Eng. A, 2001, vol. 303, p. 273.

    Article  Google Scholar 

  17. Vilar, R., Conde, O., and Franco, S., Crystallographic structure of Al3Nb in laser-processed Al–Nb alloys, Intermetallics, 1999, vol. 7, p. 1227.

    Article  CAS  Google Scholar 

  18. Baumann, J.R., Liebemann, E.K., Simon, M., and Bucher, E., Growth, structural study, and thermal stability of metallic Al/Nb superlattices, Phys. Rev. B, 1992, vol. 45, p. 3778.

    Article  CAS  Google Scholar 

  19. Wang, N., Chao, D., Hou, J., Zhang, Y., Huang, K., Jiao, S., and Zhu, H., Direct synthesis of Nb–Al intermetallic nanoparticles by sodiothermic homogeneous reduction in molten salts, Intermetallics, 2013, vol. 43, p. 45.

    Article  CAS  Google Scholar 

  20. Miao, W., Tao, K., Liu, B.X., and Li, B., Formation of NbAl3 by Nb ion implantation using metal vapor vacuum arc ion source, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 2000, vol. 160, p. 343.

    Article  CAS  Google Scholar 

  21. Santamaria, M., Di Franco, F., Di Quarto, F., Skeldon, P., and Thompson, G.E., Tailoring of the solid state properties of Al–Nb mixed oxides: a photoelectrochemical study, J. Phys. Chem. C, 2013, vol. 117, p. 4201.

    Article  CAS  Google Scholar 

  22. De Sá, A.I., Rangel, C.M., Smith, C.J.E., Skeldon, P., and Thompson, G.E., Growth of anodic oxides on sputtered Al–Nb alloys, Key Eng. Mater., 2002, vol. 230, p. 44.

    Article  Google Scholar 

  23. Wang, F., Liang, Y.F., Shang, S.L., Liu, Z.K., and Lin, J.P., Nb–Al diffusion reaction in high Nb containing TiAl porous alloys, Mater. Sci. Technol., 2015, vol. 31, p. 1388.

    Article  CAS  Google Scholar 

  24. Peng, L.M., Synthesis and mechanical properties of niobium aluminide-based composites, Mater. Sci. Eng. A, 2008, vol. 480, p. 232.

    Article  CAS  Google Scholar 

  25. De Lazzari, C.P., Danielle Goya Simões, D., and Trani Capocchi, J.D., Study of the aluminothermic reduction of niobium pentoxide through thermal analysis experiments and high energy milling processing, Mater. Res., 2007, vol. 10, p. 215.

    Article  CAS  Google Scholar 

  26. Yeh, C.L. and Wang, H.J., Effects of sample stoichiometry of thermite-based SHS reactions on formation of Nb–Al intermetallics, J. Alloys Compd., 2009, vol. 485, p. 280.

    Article  CAS  Google Scholar 

  27. Sina, H. and Iyengar, S., Studies on the formation of aluminides in heated Nb–Al powder mixtures, J. Alloys Compd., 2015, vol. 628, p. 19.

    Article  CAS  Google Scholar 

  28. Fleischer, R.L., Field, R.D., Denike, K.K., and Zabala, R.J., Mechanical properties of alloys of IrNb and other high-temperature intermetallic compounds, Metallurg. Trans. A, 1990, vol. 21, p. 306.

    Google Scholar 

  29. Jiao, Z., Li, C., Bai, Y., Zhang, M., Liu, Q., Ling, X., Gong, Y., Liu, F., and Liu, Z., A comparative study of NbAl3 and Nb3Al itermetallic compounds under pressure, Comput. Mater. Sci., 2017, vol. 126, p. 280.

    Article  CAS  Google Scholar 

  30. Khireche, S., Boughrara, D., Kadri, A., Hamadou L., and Benbrahim, N., Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt % NaCl solution, Corros. Sci., 2014, vol. 87, p. 504.

    Article  CAS  Google Scholar 

  31. Gupta, R.K., Fabijanic, D., Zhang, R., and Birbilis, N., Corrosion behaviour and hardness of in situ consolidated nanostructured Al and Al–Cr alloys produced via high-energy ball milling, Corros. Sci., 2015, vol. 98, p. 643.

    Article  CAS  Google Scholar 

  32. Oladijo, O.P., Obadele, B.A., Venter, A.M., and Cornish, L.A., Investigating the effect of porosity on corrosion resistance and hardness of WC–Co coatings on metal substrates, Afr. Corros. J., 2016, vol. 2, p. 37.

    Google Scholar 

  33. Decheng, K., Chaofang, D., Xiaoqing, N., Liang, Z., Cheng, M., Jizheng, Y., Yucheng, J., Yupeng, Y., Kui, X., Xuequn, C., and Xiaogang, Li, High-throughput fabrication of nickel-based alloys with different Nb contents via a dual-feed additive manufacturing system: effect of Nb content on microstructural and mechanical properties, J. Alloys Compd., 2019, vol. 785, p. 826.

    Article  CAS  Google Scholar 

  34. Okamoto, H., Supplemental literature review of binary phase diagrams: Ag–Nd, Ag–Zr, Al–Nb, B–Re, B–Si, In–Pt, Ir–Y, Na–Si, Na–Zn, Nb–P, Nd–Pt, and Th–Zr, J. Phase Equilib. Diffus., 2014, vol. 35, p. 636.

    Article  CAS  Google Scholar 

  35. Witusiewicz, V.T., Bondar, A.A., Hecht, U., Rex, S., and Velikanova, T.Y., The Al–B–Nb–Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al–Ti, J. Alloys Compd., 2008, vol. 465, p. 64.

    Article  CAS  Google Scholar 

  36. He, C., Stein, F., and Palm, M., Thermodynamic description of the systems Co–Nb, Al–Nb and Co–Al–Nb, J. Alloys Compd., 2015, vol. 637, p. 36.

    Article  CAS  Google Scholar 

  37. Carvalho Coelho, G., Angelo Nunes, C., Fiorani, J.M., David, N., and Vilasi, M., Mat. Res., 2019, vol. 22, p. 1.

    Google Scholar 

  38. Jorda, J.L., lükiger, R.F., and Muller, J., A New metallurgical investigation of the niobium–aluminium system, J. Less Common. Met., 1980, vol. 75, p. 227.

    Article  CAS  Google Scholar 

  39. Ribaud, G., La théorie du chauffage par courants induits de haute fréquence, J. Phys. Radium, 1932, vol. 3, p. 537.

    Article  Google Scholar 

  40. Souilah, Y., Boutouta, A., Boulkhessaim, S., Bedboudi, H., Bourbia, A., and Draissia, M., Correlation of hardness and corrosion characteristics with crystalline structures of Al–Mg alloys, Phys. Scr., 2013, vol. 88, p. 06560.

    Article  CAS  Google Scholar 

  41. Knipling, K.E., Dunand, D.C., and Seidman, D.N., Criteria for developing castable, creep-resistant aluminum-based alloys—a review, Z. Metallkd., 2006, vol. 97, no. 3, p. 246.

    Article  CAS  Google Scholar 

  42. George, E., Totten, D., and MacKenzie, S., Handbook of Aluminum, vol. 2: Alloy Production and Materials Manufacturing, CRC Press, 2003, p. 736

  43. Prach, O., Trudonoshyn, O., and Puchnin, M., Effects of chemical composition on mechanical properties of Al–Mg–Si–Mn based alloys materials engineering, Mater. Inž., 2017, vol. 24, p. 11.

    CAS  Google Scholar 

  44. Car, T., Radić, N., Panjan, P., and Tonejc, A., Mehanical properties of Al–(Nb, Mo, Ta, W) thin films, Strojarstvo, 2011, vol. 53, p. 429.

    Google Scholar 

  45. Osório, W.R., Freire, C.M., and Garcia, A., The effect of the dendritic microstructure on the corrosion resistance of Zn–Al alloys, J. Alloys Compd., 2005, vol. 397, p. 179.

    Article  CAS  Google Scholar 

  46. Osório, W.R., Santos, C.A., Quaresma, J.M.V., and Garcia, A., Mechanical properties as a function of thermal parameters and microstructure of Zn–Al castings, J. Mater. Process. Technol., 2003, vol. 143-144, p. 703.

    Article  CAS  Google Scholar 

  47. Donelan, P., Modelling microstructural and mechanical properties of ferritic ductile cast iron, Mater. Sci. Technol., 2000, vol. 16, p. 261.

    Article  CAS  Google Scholar 

  48. Quaresma, J.M.V., Santos, C.A., and Garcia, A., Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys, Metall. Mater. Trans. A, 2000, vol. 31, p. 3167.

    Article  Google Scholar 

  49. Khun, N.W. and Liu, E., Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution, Thin Solid Films, 2009, vol. 517, p. 4762.

    Article  CAS  Google Scholar 

  50. Benzarouk, H., Drici, A., Mekhnache, M., Amara, A., Guerioune, M., Bernède, J.C., and Bendjffal, H., Effect of different dopant elements (Al, Mg, and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP), Superlattices Microstruct., 2012, vol. 52, p. 594.

    Article  CAS  Google Scholar 

  51. Enos, D.G., The potentiodynamic polarization scan, Tech. Rep. no. 33, Center for Electrochemical Science & Engineering. Department of Materials, 1997.

  52. Wong, L.L., Martin, S.I., and Rebak, R.B., Methods to calculate corrosion rates for alloy from polarization resistance experiments, Proc. ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conf., Vancouver, 2006.

  53. Shi, Y.Z., Yang, B., Xie, X., Brechtl, J., Dahmen, K.A., and Liaw, P.K., Corrosion of AlxCoCrFeNi high-entropy alloys: Al content and potential scan-rate dependent pitting behavior, Corros. Sci., 2017, vol. 33, p. 119.

    Google Scholar 

  54. Singh, D., Dhayal, V., and Chandra, D.A., Corrosion performance of nano-alumina coatings over anodized aluminum alloy by dip coating method, Surf. Eng. Appl. Electrochem., 2019, vol. 55, p. 436.

    Article  Google Scholar 

  55. Toloei, A. and Stoilov, V.D., Northwood Proc. ASME 2013 Int. Mechanical Engineering Congress & Exposition IMECE2013, San Diego, CA, Nov. 13–21, 2013.

  56. Chen, Y. and Jepson, W.P., EIS measurement for corrosion monitoring under multiphase flow conditions, Electrochim. Acta, 1999, vol. 44, no. 24, p. 4453.

    Article  CAS  Google Scholar 

  57. Prakashaiah, B.G., Vinaya Kumara, D., Anup Pandith, A., Nityananda Shetty, A., and Amitha Rani, B.E., Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives, Corros. Sci., 2018, vol. 136, p. 326.

    Article  CAS  Google Scholar 

  58. Arthanari, S., Jang, J.C., and Shin, K.S., Corrosion performance of high pressure die-cast Al–Si–Mg–Zn alloys in 3.5 wt % NaCl solution, J. Alloys Compd., 2019, vol. 783, p. 494.

    Article  CAS  Google Scholar 

  59. Song, G.L. and Liu, M., Corrosion and electrochemical evaluation of an Al–Si–Cu aluminum alloy in ethanol solutions, Corros. Sci., 2013, vol. 72, p. 73.

    Article  CAS  Google Scholar 

  60. Wen, J., Cui, H., Wei Na, Song, X., Zhang, G., Wang, C., and Song, Q., Effect of phase composition and microstructure on the corrosion resistance of Ni–Al intermetallic compounds, J. Alloys Compd., 2017, vol. 695, p. 2424.

    Article  CAS  Google Scholar 

  61. Gupta, R.K., Murty, B.S., and Birbilis, N., Corrosion behaviour of high-energy ball milled, anocrystalline Al alloys, in An Overview of High-Energy Ball Milled Nanocrystalline Aluminum Alloys, Cham: Springer Int. Publ., 2017.

    Book  Google Scholar 

  62. Kharitonov, D.S., Sommertunec, J., Örneka, C., Ryld, J., Kuriloe, I., Claessona, P.M., and Pana, J., Corrosion inhibition of aluminum alloy AA6063-T5 by vanadates: microstructure characterization and corrosion analysis, J. Electrochem. Soc., 2018, vol. 165, p. 116.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out with the help of the Directorate General of Scientific Research and Technological Development DGRSDT. The authors are grateful to researchers at the ENSMM Annaba for SEM observations and Digital surf MountainlabPremium8 Software Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Debili.

Ethics declarations

Authors announce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Layachi, F., Debili, M.Y. & Bedboudi, H. Structure and Corrosion Behaviour of Al–Nb Alloys. Russ J Electrochem 58, 360–380 (2022). https://doi.org/10.1134/S1023193522050081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522050081

Keywords:

Navigation