Skip to main content
Log in

Electroactive Composites Based on Lithium Intercalation Compounds and Highly Conductive Materials: Methods of Synthesis and Electrochemical Characteristics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Many lithium intercalation compounds, which have successful applications as lithium-ion battery electrode materials, are used not in individual state, but as a part of specially organized composites containing also auxiliary components distributed over the surface of intercalation-material particles, as well as in the interparticle space. The applied modifier-substances affect such characteristics of intercalation materials as capacity, its reversibility, and persistence during long-term cycling in the charge–discharge mode, as well as with varying the electrode current and potential ranges. In this work, the behavior of a modifying agent, belonging to the class of compounds known in the literature as MAX phases, is studied in detail in the composition of an electroactive composite. The MAX-phase agents have general formula Mn + 1AXn, where M is the transition metal, A is the element of the Periodic Table III–VI groups, and X is C or N. The temperature required for the Ti3SiC2 compound synthesis is close to 1500°C. We succeeded in reducing the temperature by means of preliminary mechanochemical treatment of the reagents’ mixture. The action mechanism of the Ti3SiC2-modifier is considered in comparison with similar models proposed in the literature. Comparison of the characteristics of composite materials with different Ti3SiC2-content and different types of modified intercalation compounds (substrates) showed a positive effect of the modifier both on the kinetics of electrode processes and the rate of degradation of the materials’ capacitive characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Conway, B.E., Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage, J. Electrochem. Soc., 1991, vol. 138, p. 1539.

    Article  CAS  Google Scholar 

  2. Eftekhari, A., Low voltage anode materials for lithium-ion batteries, Energy Storage Mater., 2017, vol. 7, p. 157.

    Article  Google Scholar 

  3. Simon, P., Gogotsi, Y., and Dunn, B., Where Do Batteries End and Supercapacitors Begin? Science, 2014, vol. 343, p. 1210.

    Article  CAS  PubMed  Google Scholar 

  4. Xu, J., Zhao, M.-Q., Wang, Y., Yao, W., Chen, C., Anasori, B., Sarycheva, A., Ren, C.E., Mathis, T., Gomes, L., Zhenghua, L., and Gogotsi, Y., Demonstration of Li-Ion Capacity of MAX Phases, ACS Energy Lett., 2016, vol. 1, p. 1094.

    Article  CAS  Google Scholar 

  5. Huang, H., Yin, S.-C., Kerr, T., Taylor, N., and Nazar, L.F., Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries, Adv. Mater., 2002, vol. 14, p. 1525.

    Article  CAS  Google Scholar 

  6. Gaubicher, J., Wurm, C., Goward, G., Masquelier, C., and Nazar, L., Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries, Chem. Mater., 2000, vol. 12, p. 3240.

    Article  CAS  Google Scholar 

  7. Ivanishchev, A.V., Churikov, A.V., and Ushakov, A.V., Lithium transport processes in electrodes on the basis of Li3V2(PO4)3 by constant current chronopotentiometry, cyclic voltammetry and pulse chronoamperometry, Electrochim. Acta, 2014, vol. 122, p. 187.

    Article  CAS  Google Scholar 

  8. Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., and Ushakov, A.V., Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data, Ionics, 2016, vol. 22, p. 483.

    Article  CAS  Google Scholar 

  9. Ivanishchev, A.V., Ushakov, A.V., Ivanishcheva, I.A., Churikov, A.V., Mironov, A.V., Fedotov, S.S., Khasanova, N.R., and Antipov, E.V., Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material, Electrochim. Acta, 2017, vol. 230, p. 479.

    Article  CAS  Google Scholar 

  10. Babbar, P., Ivanishchev, A., Churikov, A., and Dixit, A., Electrochemical behavior of carbonic precursor with Na3V2(PO4)3 nanostructured material in hybrid battery system, Ionics, 2017, vol. 23, p. 3067.

    Article  CAS  Google Scholar 

  11. Ushakov, A.V., Makhov, S.V., Gridina, N.A., Ivanishchev, A.V., and Gamayunova, I.M., Rechargeable lithium-ion system based on lithium–vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning, Monatsh. Chem., 2019, vol. 150, p. 499.

    Article  CAS  Google Scholar 

  12. Sun, C., Rajasekhara, S., Dong, Y., and Goodenough, J.B., Hydrothermal Synthesis and Electrochemical Properties of Li3V2(PO4)3/C-Based Composites for Lithium-Ion Batteries, ACS Appl. Mater. Inter., 2011, vol. 3, p. 3772.

    Article  CAS  Google Scholar 

  13. Chen, Y., Zhao, Y., An, X., Liu, J., Dong, Y., and Chen, L., Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries, Electrochim. Acta, 2009, vol. 54, p. 5844.

    Article  CAS  Google Scholar 

  14. Yao, J., Wei, S., Zhang, P., Shen, C., Aguey-Zinsou, K.-F., and Wang, L., Synthesis and properties of Li3V2 – xCex(PO4)3/C cathode materials for Li-ion batteries, J. Alloy. Compd., 2012, vol. 532, p. 49.

    Article  CAS  Google Scholar 

  15. Yuan, W., Yan, J., Tang, Z., Sha, O., Wang, J., Mao, W., and Ma, L., Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability, Electrochim. Acta, 2012, vol. 72, p. 138.

    Article  CAS  Google Scholar 

  16. Bini, M., Ferrari, S., Capsoni, D., and Massarotti, V., Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material, Electrochim. Acta, 2011, vol. 56, p. 2648.

    Article  CAS  Google Scholar 

  17. Ren, M.M., Zhou, Z., Gao, X.P., Peng, W.X., and Wei, J.P., Core-Shell Li3V2(PO4)3@C Composites as Cathode Materials for Lithium-Ion Batteries, J. Phys. Chem. C, 2008, vol. 112, p. 5689.

    Article  CAS  Google Scholar 

  18. Pan, A., Liu, J., Zhang, J.-G., Xu, W., Cao, G., Nie, Z., Arey, B.W., and Liang, S., Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries, Electrochem. Commun., 2010, vol. 12, p. 1674.

    Article  CAS  Google Scholar 

  19. Teng, F., Hu, Z.-H., Ma, X.-H., Zhang, L.-C., Ding, C.-X., Yu, Y., and Chen, C.-H., Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries, Electrochim. Acta, 2013, vol. 91, p. 43.

    Article  CAS  Google Scholar 

  20. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. Power Sources, 2017, vol. 343, p. 395.

    Article  CAS  Google Scholar 

  21. Konarova, M. and Taniguchi, I., Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries, J. Power Sources, 2010, vol. 195, p. 3661.

    Article  CAS  Google Scholar 

  22. Chong, J., Xun, S., Song, X., Ridgway, P., Liu, G., and Battaglia, V.S., Towards the understanding of coatings on rate performance of LiFePO4, J. Power Sources, 2012, vol. 200, p. 67.

    Article  CAS  Google Scholar 

  23. Kam, K.C., Gustafsson, T., and Thomas, J.O., Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries, Solid State Ionics, 2011, vol. 192, p. 356.

    Article  CAS  Google Scholar 

  24. Fujita, Y., Iwase, H., Shida, K., Liao, J., Fukui, T., and Matsuda, M., Synthesis of high-performance Li2FeSiO4/C composite powder by spray-freezing/freeze-drying a solution with two carbon sources, J. Power Sources, 2017, vol. 361, p. 115.

    Article  CAS  Google Scholar 

  25. Jeitschko, W. and Nowotny, H., Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ, Monatsh. Chem., 1967, vol. 98, p. 329.

    Article  CAS  Google Scholar 

  26. Barsoum, M.W. and El-Raghy, T., Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2, J. Am. Ceram. Soc., 1996, vol. 79, p. 1953.

    Article  CAS  Google Scholar 

  27. Barsoum, M.W. and El-Raghy, T., The MAX Phases: Unique New Carbide and Nitride Materials: Ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight, Am. Sci., 2001, vol. 89, p. 334.

    Google Scholar 

  28. Högberg, H., Hultman, L., Emmerlich, J., Joelsson, T., Eklund, P., Molina-Aldareguia, J.M., Palmquist, J.-P., Wilhelmsson, O., and Jansson, U., Growth and characterization of MAX-phase thin films, Surf. Coat. Tech., 2005, vol. 193, p. 6.

    Article  CAS  Google Scholar 

  29. Sun, Z.M., Progress in research and development on MAX phases: a family of layered ternary compounds, Int. Mater. Rev., 2011, vol. 56, p. 143.

    Article  CAS  Google Scholar 

  30. An, J., Liu, C., Guo, R., Li, Y., and Xu, W., Ti3SiC2 Modified LiFePO4/C Cathode Materials with Improved Electrochemical Performance, J. Electrochem. Soc., 2012, vol. 159, p. A2038.

    Article  CAS  Google Scholar 

  31. Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 1989, vol. 5, p. 283.

    Article  CAS  Google Scholar 

  32. Cai, G., Guo, R., Liu, L., Yang, Y., Zhang, C., Wu, C., Guo, W., and Jiang, H., Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2, J. Power Sources, 2015, vol. 288, p. 136.

    Article  CAS  Google Scholar 

  33. Wu, C., Guo, R., Cai, G., Zhang, C., Yang, Y., Guo, W., Liu, Z., Wan, Y., and Jiang, H., Ti3SiC2 modified Li3V2(PO4)3/C cathode materials with simultaneous improvement of electronic and ionic conductivities for lithium ion batteries, J. Power Sources, 2016, vol. 306, p. 779.

    Article  CAS  Google Scholar 

  34. Sun, D., Wu, C., Guo, R., Liu, Z., Xie, D., Zheng, M., Wang, B., Peng, J., and Jiang, H., Enhanced low temperature electrochemical properties of Li3V2(PO4)3/C modified by a mixed conductive network of Ti3SiC2 and C, Ceram. Int., 2017, vol. 43, p. 2791.

    Article  CAS  Google Scholar 

  35. Medvedeva, N.I., Enyashin, A.N., and Ivanovskii, A.L., Modeling of the electronic structure, chemical bonding, and properties of ternary silicon carbide Ti3SiC2, J. Struct. Chem., 2011, vol. 52, p. 785.

    Article  CAS  Google Scholar 

  36. Xu, Y.-G., Ou, X.-D., and Rong, X.-M., Vacancy trapping behaviors of hydrogen in Ti3SiC2: A first-principles study, Mater. Lett., 2014, vol. 116, p. 322.

    Article  CAS  Google Scholar 

  37. Eklund, P., Beckers, M., Jansson, U., Högberg, H., and Hultman, L., The Mn+1AXn phases: Materials science and thin-film processing, Thin Solid Films, 2010, vol. 518, p. 1851.

    Article  CAS  Google Scholar 

  38. Kero, I., Tegman, R., and Antti, M.-L., Effect of the amounts of silicon on the in situ synthesis of Ti3SiC2 based composites made from TiC/Si powder mixtures, Ceram. Int., 2010, vol. 36, p. 375.

    Article  CAS  Google Scholar 

  39. Grigoryan, A.E., Rogachev, A.S., Sychev, A.E., and Levashov, E.A., SHS and formation of structure in composite materials in three-component Ti–Si–C, Ti‒Si–N, and Ti–B–N systems, Refract. Ind. Ceram., 1999, vol. 40, p. 484.

    Article  CAS  Google Scholar 

  40. Goto, T. and Hirai, T., Chemically vapor deposited Ti3SiC2, Mater. Res. Bull., 1987, vol. 22, p. 1195.

    Article  CAS  Google Scholar 

  41. Zhimei, S., Yi, Z., and Yanchun, Z., Synthesis of Ti3SiC2 powders by a solid-liquid reaction process, Scripta Mater., 1999, vol. 41, p. 61.

    Article  Google Scholar 

  42. Sun, Z. and Zhou, Y., Fluctuation synthesis and characterization of Ti3SiC2 powders, Mater. Res. Innov., 1999, vol. 2, p. 227.

    Article  Google Scholar 

  43. Arunajatesan, S. and Carim, A.H., Synthesis of Titanium Silicon Carbide, J. Am. Ceram. Soc., 1995, vol. 78, p. 667.

    Article  CAS  Google Scholar 

  44. Kellerman, D.G., Gorshkov, V.S., Blinovskov, Ya.N., Grigorov, I.G., Perelyaev, V.A., and Shveikin, V.A., Synthesis and properties of the ternary phase Ti3SiC2, Inorg. Mater., 1997, vol. 33, p. 271.

    CAS  Google Scholar 

  45. Yang, S., Sun, Z.M., and Hashimoto, H., Reaction in Ti3SiC2 powder synthesis from a Ti–Si–TiC powder mixture, J. Alloy. Compd., 2004, vol. 368, p. 312.

    Article  CAS  Google Scholar 

  46. Goldin, B.A., Istomin, P.V., and Ryabkov, Yu.I., Reduction solid-state synthesis of titanium silicide carbide, Ti3SiC2, Inorg. Mater., 1997, vol. 33, p. 577.

    CAS  Google Scholar 

  47. Istomin, P.V., Nadutkin, A.V., Ryabkov, Yu.I., and Goldin, B.A., Preparation of Ti3SiC2, Inorg. Mater., 2006, vol. 42, p. 250.

    Article  CAS  Google Scholar 

  48. Zou, Y., Sun, Z.M., Tada, S., and Hashimoto, H., Effect of Al addition on low-temperature synthesis of Ti3SiC2 powder, J. Alloy. Compd., 2008, vol. 461, p. 579.

    Article  CAS  Google Scholar 

  49. Liang, B., Han, X., Zou, Q., Zhao, Y., and Wang, M., TiC/Ti3SiC2 composite prepared by mechanical alloying, Int. J. Refract. Met. H., 2009, vol. 27, p. 664.

    Article  CAS  Google Scholar 

  50. Cui, Y.R., Xu, Y.H., Xu, S.C., Li, X.M., and Yang, J., Synthesis of High Purity Ti3SiC2 Powder by Vacuum Sintering, Mater. Sci. Forum., 2009, vols. 620–622, p. 331.

    Article  Google Scholar 

  51. Avvakumov, E.G., Mechanical Activation Methods of Chemical Processes (in Russian), Novosibirsk: Nauka, 1989.

    Google Scholar 

  52. Chen, Y., Zhang, D., Bian, X., Bie, X., Wang, C., Du, F., Jang, M., Chen, G., and Wei, Y., Characterizations of the electrode/electrolyte interfacial properties of carbon coated Li3V2(PO4)3 cathode material in LiPF6 based electrolyte, Electrochim. Acta, 2012, vol. 79, p. 95.

    Article  CAS  Google Scholar 

  53. Zhang, S., Wu, Q., Deng, C., Liu, F.L., Zhang, M., Meng, F.L., and Gao, H., Synthesis and characterization of Ti–Mn and Ti–Fe codoped Li3V2(PO4)3 as cathode material for lithium ion batteries, J. Power Sources, 2012, vol. 218, p. 56.

    Article  CAS  Google Scholar 

  54. Yin, S.-C., Grondey, H., Strobel, P., Anne, M., and Nazar, L.F., Electrochemical Property:  Structure Relationships in Monoclinic Li3 – yV2(PO4)3, J. Am. Chem. Soc., 2003, vol. 125, p. 10402.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, L.-L., Liang, G., Peng, G., Zou, F., Huang, Y.-H., Croft, M.C., and Ignatov, A., Significantly Improved Electrochemical Performance in Li3V2(PO4)3/C Promoted by SiO2 Coating for Lithium-Ion Batteries, J. Phys. Chem. C, 2012, vol. 116, p. 12401.

    Article  CAS  Google Scholar 

  56. Markevich, E., Sharabi, R., Gottlieb, H., Borgel, V., Fridman, K., Salitra, G., Aurbach, D., Semrau, G., Schmidt, M.A., Schall, N., and Bruenig, C., Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions, Electrochem. Commun., 2012, vol. 15, p. 22.

    Article  CAS  Google Scholar 

  57. Markovsky, B., Rodkin, A., Cohen, Y.S., Palchik, O., Levi, E., Aurbach, D., Kim, H.-J., and Schmidt, M., The study of capacity fading processes of Li-ion batteries: major factors that play a role, J. Power Sources, 2003, vols. 119–121, p. 504.

    Article  CAS  Google Scholar 

  58. Ahrens, L.H., The use of ionization potentials Part 1. Ionic radii of the elements, Geochim. Cosmochim. Ac., 1952, vol. 2, p. 155.

    Article  CAS  Google Scholar 

  59. Svitan’ko, A., Scopets, V., Novikova, S., and Yaroslavtsev, A., The effect of composite formation with oxides on the ion conductivity of NASICON-Type LiTi2(PO4)3 and olivine-type LiFePO4, Solid State Ionics, 2015, vol. 271, p. 42.

    Article  CAS  Google Scholar 

  60. Iltchev, N., Chen, Y., Okada, S., and Yamaki, J.-I., LiFePO4 storage at room and elevated temperatures, J. Power Sources, 2003, vols. 119–121, p. 749.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanishchev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanishchev, A.V., Ivanishcheva, I.A., Nam, SC. et al. Electroactive Composites Based on Lithium Intercalation Compounds and Highly Conductive Materials: Methods of Synthesis and Electrochemical Characteristics. Russ J Electrochem 57, 706–720 (2021). https://doi.org/10.1134/S1023193521070053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521070053

Keywords:

Navigation