Skip to main content
Log in

Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to establish the mechanism and to determine the parameters of lithium transport in electrodes based on lithium-vanadium phosphate (Li3V2(PO4)3), the kinetic model was designed and experimentally tested for joint analysis of electrochemical impedance (EIS), cyclic voltammetry (CV), pulse chronoamperometry (PITT), and chronopotentiometry (GITT) data. It comprises the stages of sequential lithium-ion transfer in the surface layer and the bulk of electrode material’s particles, including accumulation of lithium in the bulk. Transfer processes at both sites are of diffusion nature and differ significantly, both by temporal (characteristic time, τ) and kinetic (diffusion coefficient, D) constants. PITT data analysis provided the following D values for the predominantly lithiated and delithiated forms of the intercalation material: 10−9 and 3 × 10−10 cm2 s−1, respectively, for transfer in the bulk and 10−12 cm2 s−1 for transfer in the thin surface layer of material’s particles. D values extracted from GITT data are in consistency with those obtained from PITT: 3.5–5.8 × 10−10 and 0.9–5 × 10−10 cm2 s−1 (for the current and currentless mode, respectively). The D values obtained from EIS data were 5.5 × 10−10 cm2 s−1 for lithiated (at a potential of 3.5 V) and 2.3 × 10−9 cm2 s−1 for delithiated (at a potential 4.1 V) forms. CV evaluation gave close results: 3 × 10−11 cm2 s−1 for anodic and 3.4 × 10−11 cm2 s−1 for cathodic processes, respectively. The use of complex experimental measurement procedure for combined application of the EIS, PITT, and GITT methods allowed to obtain thermodynamic E,c dependence of Li3V2(PO4)3 electrode, which is not affected by polarization and heterogeneity of lithium concentration in the intercalate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J Electrochem Soc 144:2581–2586

    Article  CAS  Google Scholar 

  3. Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2003) Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries. J Power Sources 119–121:266–272

    Article  Google Scholar 

  4. Huang H, Faulkner T, Barker J, Saidi MY (2009) Lithium metal phosphates, power and automotive applications. J Power Sources 189:748–751

    Article  CAS  Google Scholar 

  5. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38

    Article  CAS  Google Scholar 

  6. Ivanishchev AV, Churikov AV, Ushakov AV (2014) Lithium transport processes in electrodes on the basis of Li3V2(PO4)3 by constant current chronopotentiometry, cyclic voltammetry and pulse chronoamperometry. Electrochim Acta 122:187–196

    Article  CAS  Google Scholar 

  7. Chen Z, Dai C, Wu G, Nelson M, Hu X, Zhang R, Liu J, Xia J (2010) High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test. Electrochim Acta 55:8595–8599

    Article  CAS  Google Scholar 

  8. Ai D, Liu K, Lu Z, Zou M, Zeng D, Ma J (2011) Aluminothermal synthesis and characterization of Li3V2−xAlx(PO4)3 cathode materials for lithium ion batteries. Electrochim Acta 56:2823–2827

    Article  CAS  Google Scholar 

  9. Zhou X, Liu Y, Guo Y (2009) Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction. Electrochim Acta 54:2253–2258

    Article  CAS  Google Scholar 

  10. Chen Y, Zhang D, Bian X, Bie X, Wang C, Du F, Jang M, Chena G, Wei Y (2012) Characterizations of the electrode/electrolyte interfacial properties of carbon coated Li3V2(PO4)3 cathode material in LiPF6 based electrolyte. Electrochim Acta 79:95–101

    Article  CAS  Google Scholar 

  11. Zhang G, Li X, Jia H, Pang X, Yang H, Wang Y, Ding K (2012) Preparation and characterization of polyaniline (PANI) doped Li3V2(PO4)3. Int J Electrochem Sci 7:830–843

    CAS  Google Scholar 

  12. Huang JS, Yang L, Liu KY, Tang YF (2010) Synthesis and characterization of Li3V(2−2x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries. J Power Sources 195:5013–5018

    Article  CAS  Google Scholar 

  13. Dai C, Chen Z, Jin H, Hu X (2010) Synthesis and performance of Li3(V1−xMgx)2(PO4)3 cathode materials. J Power Sources 195:5775–5779

    Article  CAS  Google Scholar 

  14. Zhang X, Liu S, Huang K, Zhuang S, Guo J, Wu T, Cheng P (2012) Synthesis and characterization of macroporous Li3V2(PO4)3/C composites as cathode materials for Li-ion batteries. J Solid State Electrochem 16:937–944

    Article  CAS  Google Scholar 

  15. Du X, He W, Zhang X, Yue Y, Liu H, Zhang X, Min D, Ge X, Du Y (2012) Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres. J Mater Chem 22:5960–5969

    Article  CAS  Google Scholar 

  16. Deng C, Zhang S, Yang SY, Gao Y, Wu B, Ma L, Fu BL, Wu Q, Liu FL (2011) Effects of Ti and Mg codoping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries. J Phys Chem C 115:15048–15056

    Article  CAS  Google Scholar 

  17. Zhang L-L, Liang G, Peng G, Zou F, Huang Y-H, Croft MC, Ignatov A (2012) Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116:12401–12408

    Article  CAS  Google Scholar 

  18. Zhai J, Zhao M, Wang D, Qiao Y (2010) Effect of MgO nanolayer coated on Li3V2(PO4)3/C cathode material for lithium-ion battery. J Alloys and Comp. 502:401–406

    Article  CAS  Google Scholar 

  19. Qiao YQ, Tu JP, Mai YJ, Cheng LJ, Wang XL, Gu CD (2011) Enhanced electrochemical performances of multi-walled carbon nanotubes modified Li3V2(PO4)3/C cathode material for lithium-ion batteries. J Alloys and Comp. 509:7181–7185

    Article  CAS  Google Scholar 

  20. Jiang T, Wei YJ, Pan WC, Li Z, Ming X, Chen G, Wang CZ (2009) Preparation and electrochemical studies of Li3V2(PO4)3/Cu composite cathode material for lithium ion batteries. J Alloys and Comp. 488:L26–L29

    Article  CAS  Google Scholar 

  21. Qiao YQ, Tu JP, Wang XL, Zhang D, Xiang JY, Mai YJ, Gu CD (2011) Synthesis and improved electrochemical performances of porous Li3V2(PO4)3/C spheres as cathode material for lithium-ion batteries. J Power Sources 196:7715–7720

    Article  CAS  Google Scholar 

  22. Dang J, Xiang F, Gu N, Zhang R, Mukherjee R, Oh I-K, Koratkar N, Yang Z (2013) Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries. J Power Sources 243:33–39

    Article  CAS  Google Scholar 

  23. Yang C-C, Kung S-H, Lin SJ, Chien W-C (2014) Li3V2(PO4)3/C composite materials synthesized using the hydrothermal method with double-carbon sources. J Power Sources 251:296–304

    Article  CAS  Google Scholar 

  24. Wang S, Zhang Z, Jiang Z, Deb A, Yang L, Hirano S (2014) Mesoporous Li3V2(PO4)3@CMK-3 nanocomposite cathode material for lithium ion batteries. J Power Sources 253:294–299

    Article  CAS  Google Scholar 

  25. Zhang L-L, Zhang X, Sun Y-M, Luo W, Hu X-L, Wu X-J, Huang Y-H (2011) Improved electrochemical performance in Li3V2(PO4)3 promoted by niobium-incorporation. J Electrochem Soc 158:A924–A929

    Article  CAS  Google Scholar 

  26. Levi MD, Aurbach D (2004) Impedance of a single intercalation particle and of non-homogeneous, multilayered porous composite electrodes for li-ion batteries. J Phys Chem B 108:11693–11703

    Article  CAS  Google Scholar 

  27. Levi MD, Aurbach D (1999) Frumkin intercalation isotherm D a tool for the description of lithium insertion into host materials: a review. Electrochim Acta 45:167–185

    Article  CAS  Google Scholar 

  28. Levi MD, Wang C, Aurbach D (2004) Two parallel diffusion paths model for interpretation of PITT and EIS responses from non-uniform intercalation electrodes. J Electroanal Chem 561:1–11

    Article  CAS  Google Scholar 

  29. Meyers JP, Doyle M, Darling RM, Newman J (2000) The impedance response of a porous electrode composed of intercalation particles. J Electrochem Soc 147:2930–2940

    Article  CAS  Google Scholar 

  30. Pajkossy T (1994) Impedance of rough capacitive electrodes. J Electroanal Chem 364:111–125

    Article  CAS  Google Scholar 

  31. Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc 148:A422–A426

    Article  CAS  Google Scholar 

  32. Ivanishchev AV, Churikov AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM (2008) Impedance spectroscopy of lithium–carbon electrodes. Russ J Electrochem 44:510–524

    Article  CAS  Google Scholar 

  33. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM, Sycheva VO (2008) Kinetics of electrochemical lithium intercalation into thin tungsten (VI) oxide layers. Russ J Electrochem 44:530–542

    Article  CAS  Google Scholar 

  34. Churikov AV, Pridatko KI, Ivanishchev AV, Ivanishcheva IA, Gamayunova IM, Zapsis KV, Sycheva VO (2008) Impedance spectroscopy of lithium–tin film electrodes. Russ J Electrochem 44:550–557

    Article  CAS  Google Scholar 

  35. Levi MD, Wang C, Aurbach D, Chvoj Z (2004) Effect of temperature on the kinetics and thermodynamics of electrochemical insertion of Li-ions into a graphite electrode. J Electroanal Chem 562:187–203

    Article  CAS  Google Scholar 

  36. Aurbach D, Levi MD, Levi E, Telier H, Markovsky B, Salitra G (1998) Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J Electrochem Soc 145:3024–3034

    Article  CAS  Google Scholar 

  37. Levi MD, Gamolsky K, Aurbach D, Heider U, Oesten R (1999) Determination of the Li-ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway. J Electroanal Chem 477:32–40

    Article  CAS  Google Scholar 

  38. Levi MD, Lu Z, Gofer Y, Cohen Y, Cohen Y, Aurbach D, Vieil E, Serose J (1999) Simultaneous in-situ conductivity and cyclic voltammetry characterization of Li-ion intercalation into thin V2O5 films. J Electroanal Chem 479:12–20

    Article  CAS  Google Scholar 

  39. Levi MD, Wang C, Gnanaraj JS, Aurbach D (2003) Electrochemical behavior of graphite anode at elevated temperatures in organic carbonate solutions. J Power Sources 119-121:538–542

    Article  CAS  Google Scholar 

  40. Levi MD, Cohen YS, Gofer Y, Aurbach D (2004) Electrochemical responses of active metal insertion electrodes and electronically conducting polymers: common features and new insights. Electrochim Acta 49:3701–3710

    Article  CAS  Google Scholar 

  41. Markevich E, Levi MD, Aurbach D (2005) New insight into studies of the cycling performance of Li-graphite electrodes: a combination of cyclic voltammetry, electrochemical impedance, and differential self-discharge measurements. J Electrochem Soc 152:A778–A786

    Article  CAS  Google Scholar 

  42. Churikov AV, Ivanishchev AV, Ushakov AV, Romanova VO (2014) Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries. J Solid State Electrochem 18:1425–1441

    Article  CAS  Google Scholar 

  43. Wen CJ, Boukamp BA, Huggins RA, Weppner W (1979) Thermodynamic and mass transport properties of “LiAl”. J Electrochem Soc 126:2258–2266

    Article  CAS  Google Scholar 

  44. Montella C (2002) Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials Part I. Influence of charge transfer kinetics and ohmic potential drop. J Electroanal Chem 518:61–83

    Article  CAS  Google Scholar 

  45. Montella C (2005) Discussion of three models used for the investigation of insertion/extraction processes by the potential step chronoamperometry technique. Electrochim Acta 50:3746–3763

    Article  CAS  Google Scholar 

  46. Montella C (2006) Apparent diffusion coefficient of intercalated species measured with PITT. A simple formulation. Electrochim Acta 51:3102–3111

    Article  CAS  Google Scholar 

  47. Montella C, Michel R, Diard JP (2007) Numerical inversion of Laplace transforms: a useful tool for evaluation of chemical diffusion coefficients in ion-insertion electrodes investigated by PITT. J Electroanal Chem 608:37–46

    Article  CAS  Google Scholar 

  48. Montella C, Michel R (2009) New approach of electrochemical systems dynamics in the time domain under small-signal conditions: III—discrimination between nine candidate models for analysis of PITT experimental data from LixCoO2 film electrodes. J Electroanal Chem 628:97–112

    Article  CAS  Google Scholar 

  49. Montella C (2009) Re-examination of the potential-step chronoamperometry method through numerical inversion of Laplace transforms. I. General formulation and numerical solution. J Electroanal Chem 633:35–44

    Article  CAS  Google Scholar 

  50. Montella C (2009) Re-examination ofthe potential step chronoamperometry method through numerical inversion of Laplace transforms. II. Application examples. J Electroanal Chem 633:45–56

    Article  CAS  Google Scholar 

  51. Churikov AV (2002) Chronoammetric determination of the lithium transfer rate in carbon electrodes. Russ J Electrochem 38:103–108

    Article  CAS  Google Scholar 

  52. Churikov AV, Volgin MA, Pridatko KI, Ivanishchev AV, Gridina NA, L’vov AL (2003) Electrochemical intercalation of lithium into carbon: a relaxation study. Russ J Electrochem 39:531–541

    Article  CAS  Google Scholar 

  53. Churikov AV, Volgin MA, Pridatko KI (2002) On the determination of kinetic characteristics of lithium intercalation into carbon. Electrochim Acta 47:2857–2865

    Article  CAS  Google Scholar 

  54. Churikov AV, Ivanischev AV (2003) Application of pulse methods to the determination of the electrochemical characteristics of lithium intercalates. Electrochim Acta 48:3677–3691

    Article  CAS  Google Scholar 

  55. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV (2010) Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim Acta 55:2939–2950

    Article  CAS  Google Scholar 

  56. Levi MD, Aurbach D (1997) Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J. Phys. Chem. B 101:4641–4647

    Article  CAS  Google Scholar 

  57. Levi MD, Lu Z, Aurbach D (2001) Application of finite-diffusion models for the interpretation of chronoamperometric and electrochemical impedance responses of thin lithium insertion V2O5 electrodes. Solid State Ionics 143:309–318

    Article  CAS  Google Scholar 

  58. Levi MD, Lu Z, Aurbach D (2001) Li-insertion into thin monolithic V2O5 films electrodes characterized by a variety of electroanalytical techniques. J Power Sources 97–98:482–485

    Article  Google Scholar 

  59. Levi MD, Lancry E, Gizbar H, Gofer Y, Levi E, Aurbach D (2004) Phase transitions and diffusion kinetics during Mg2+- and Li-ion insertions into the Mo6S8 Chevrel phase compound studied by PITT. Electrochim Acta 49:3201–3209

    Article  CAS  Google Scholar 

  60. Markevich E, Levi MD, Aurbach D (2005) Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion-insertion electrodes. J Electroanal Chem 580:231–237

    Article  CAS  Google Scholar 

  61. Levi MD, Markevich E, Aurbach D (2005) Comparison between Cottrell diffusion and moving boundary models for determination of the chemical diffusion coefficients in ion-insertion electrodes. Electrochim Acta 51:98–110

    Article  CAS  Google Scholar 

  62. Levi MD, Demadrille R, Pron A, Vorotyntsev MA, Gofer Y, Aurbach D (2005) Application of a novel refinement method for accurate determination of chemical diffusion coefficients in electroactive materials by potential step technique. J Electrochem Soc 152:E61–E67

    Article  CAS  Google Scholar 

  63. Levi MD, Markevich E, Wang C, Aurbach D (2007) Chronoamperometric measurements and modeling of nucleation and growth, and moving boundary stages during electrochemical lithiation of graphite electrode. J Electroanal Chem 600:13–22

    Article  CAS  Google Scholar 

  64. Vorotyntsev MA, Levi MD, Aurbach D (2004) Spatially limited diffusion coupled with ohmic potential drop and/or slow interfacial exchange: a new method to determine the diffusion time constant and external resistance from potential. J Electroanal Chem 572:299–307

    Article  CAS  Google Scholar 

  65. Lee S-B, Pyun S-I (2002) Mechanism of lithium transport through an MCMB heat-treated at 800–1200 °C. Electrochim Acta 48:419–430

    Article  CAS  Google Scholar 

  66. Chang W-Y, Pyun S-I, Lee S-B (2003) Kinetics of lithium transport through a hard carbon electrode studied by analysis of current transients. J Solid State Electrochem 7:368–373

    Article  CAS  Google Scholar 

  67. Lee S-B, Pyun S-I (2003) The kinetics of lithium transport through a composite electrode made of mesocarbon-microbeads heat-treated at 800 °C investigated by current transient analysis. J Solid State Electrochem 7:374–379

    Article  CAS  Google Scholar 

  68. Go J-Y, Pyun S-I (2004) A study on lithium transport through fractal Li1-dCoO2 film electrode by analysis of current transient based upon fractal theory. Electrochim Acta 49:2551–2562

    Article  CAS  Google Scholar 

  69. Jung K-N, Pyun S-I, Lee J-W (2004) An investigation of lithium transport through vanadium pentoxide xerogel film electrode by analyses of current transient and ac-impedance spectra. Electrochim Acta 49:4371–4378

    Article  CAS  Google Scholar 

  70. Lee J-W, Pyun S-I (2005) Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions. Electrochim Acta 50:1777–1805

    Article  CAS  Google Scholar 

  71. Go J-Y, Pyun S-I, Cho S-I (2005) An experimental study on cell-impedance controlled lithium transport through Li1-dCoO2 film electrode with fractal surface by analyses of potentiostatic current transient and linear sweep voltammogram. Electrochim Acta 50:5435–5443

    Article  CAS  Google Scholar 

  72. Lee J-W, Pyun S-I (2005) A study on the potentiostatic current transient and linear sweep voltammogram simulated from fractal intercalation electrode: diffusion coupled with interfacial charge transfer. Electrochim Acta 50:1947–1955

    Article  CAS  Google Scholar 

  73. Go J-Y, Pyun S-I (2005) Theoretical approach to cell-impedance-controlled lithium transport through Li1-dCoO2 film electrode with fractal surface: numerical analysis of generalised diffusion equation. Electrochim Acta 50:3479–3487

    Article  CAS  Google Scholar 

  74. Kim K-H, Pyun S-I, Jung K-N (2006) An investigation of cell-impedance-controlled lithium transport through LiCoO2/Li1-dMn2O4 bilayer film electrode prepared by rf magnetron sputtering. Electrochim Acta 52:152

    Article  CAS  Google Scholar 

  75. Jung K-N, Pyun S-I (2006) The cell-impedance-controlled lithium transport through LiMn2O4 film electrode with fractal surface by analyses of ac-impedance spectra, potentiostatic current transient and linear sweep voltammogram. Electrochim Acta 51:4649–4658

    Article  CAS  Google Scholar 

  76. Go J-Y, Pyun S-I (2007) A review of anomalous diffusion phenomena at fractal interface for diffusion-controlled and non-diffusion-controlled transfer processes. J Solid State Electrochem 11:323–334

    Article  CAS  Google Scholar 

  77. Deiss E, Haringer D, Novak P, Haas O (2001) Modeling of the charge–discharge dynamics of lithium manganese oxide electrodes for lithium-ion batteries. Electrochim Acta 46:4185–4196

    Article  CAS  Google Scholar 

  78. Cheng Y-T, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190:453–460

    Article  CAS  Google Scholar 

  79. Li J, Yang F, Xiao X, Verbrugge MW, Cheng Y-T (2012) Potentiostatic intermittent titration technique (PITT) for spherical particles with finite interfacial kinetics. Electrochim Acta 75:56–61

    Article  CAS  Google Scholar 

  80. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) Solid-state electrochemical kinetics of Li-ion intercalation into li1-xcoo2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146:1279–1289

    Article  CAS  Google Scholar 

  81. Levi MD, Aurbach D, Vorotyntsev MA (2002) Interpretation of potential intermittence titration technique experiments for various Li-intercalation electrodes. Condensed Matt Phys 5:329–362

    Article  Google Scholar 

  82. Levi MD, Aurbach D, Maier J (2008) Electrochemically driven first-order phase transitions caused by elastic responses of ion-insertion electrodes under external kinetic control. J Electroanal Chem 624:251–261

    Article  CAS  Google Scholar 

  83. Zhang R, Zhang Y, Zhu K, Du F, Fu Q, Yang X, Wang Y, Bie X, Chen G, Wei Y (2014) Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. Appl Mater Interfaces 6:12523–12530

    Article  CAS  Google Scholar 

  84. Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Hercule KM, Xu L, Minhas-Khan A, Zhang Q (2014) One-pot synthesized bicontinuous hierarchical li3v2(po4)3/c mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett 14:1042–1048

    Article  CAS  Google Scholar 

  85. Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Synthesis and electrochemical investigations of the electrode materials were supported by the Russian Foundation for Basic Research (project #14-29-04005); structural, particle size, and surface analysis of the electrode materials were supported by the Russian Science Foundation (project #15-13-10006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Ivanishchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A. et al. Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data. Ionics 22, 483–501 (2016). https://doi.org/10.1007/s11581-015-1568-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1568-y

Keywords

Navigation