Skip to main content

Advertisement

Log in

Electrochemical lithium storage of Li4Ti5O12/NiO nanocomposites for high-performance lithium-ion battery anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li4Ti5O12/NiO (LTO/NiO) composites with various NiO contents were prepared successfully as anode materials for high-performance lithium-ion battery. The preparation procedure consisted of high-energy ball milling, high-temperature calcination, and solution coating in succession. Several techniques such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were applied to fully investigate the micromorphology, composition structure, and electrochemical performances of the LTO/NiO composites. It was found that all the LTO/NiO composites showed higher discharge capacity than the pure LTO anode within the representative 20 cycles. The LTO/5 wt.% NiO, which had the largest specific surface area of 2.1229 m2 g−1 among all the LTO/NiO composites, delivered a capacity of 203 mAh g−1 in a voltage window of 0.5–3.0 V at 1 C rate and retained a capacity of 176 mAh g−1 after 100 cycles. The CV and EIS analysis indicated that the charge/discharge processes of LTO/NiO composites included the Li+ diffusion into or out of LTO phase and the redox reaction of NiO phase. The results demonstrate that the surface modification of LTO with small amounts of NiO nanoparticles can decrease the overall charge transfer resistance by forming in situ the electron-conductive Ni, leading to the improved electrochemical behavior of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  3. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  4. Ju SH, Kang YC (2009) J Power Sources 189:185–190

    Article  CAS  Google Scholar 

  5. Zhang NQ, Liu ZM, Yang TY, Liao CL, Wang ZJ, Sun KN (2011) Electrochem Commun 13:654–656

    Article  CAS  Google Scholar 

  6. Cai R, Yu X, Liu XQ, Shao ZP (2010) J Power Sources 195:8244–8250

    Article  CAS  Google Scholar 

  7. Lin CY, Duh JG (2011) J Alloys Compd 509:3682–3685

    Article  CAS  Google Scholar 

  8. Lee DK, Shim HW, An JS, Cho CM, Cho IS, Hong KS, Kim DW (2010) Nanoscale Res Lett 5:1585–1589

    Article  CAS  Google Scholar 

  9. Tang YF, Yang L, Qiu Z, Huang JS (2008) Electrochem Commun 10:1513–1516

    Article  CAS  Google Scholar 

  10. Shenouda AY, Murali KR (2008) J Power Sources 176:332–339

    Article  CAS  Google Scholar 

  11. Kubiak P, Garcia A, Womes M, Aldon L, Olivier-Fourcade J, Lippens PE, Jumas JC (2003) J Power Sources 119:626–630

    Article  Google Scholar 

  12. Capsoni D, Bini M, Massarotti V, Mustarelli P, Ferrari S, Chiodelli G, Mozzati MC, Galinetto P (2009) J Phys Chem C 113:19664–19671

    Article  CAS  Google Scholar 

  13. Yin SY, Song L, Wang XY, Huang YH, Zhang KL, Zhang YX (2009) Electrochem Commun 11:1251–1254

    Article  CAS  Google Scholar 

  14. Yi TF, Shu J, Zhu YR, Zhu XD, Zhu RS, Zhou AN (2010) J Power Sources 195:285–288

    Article  CAS  Google Scholar 

  15. Wang J, Zhao HL, Yang Q, Wang CM, Lv PP, Xia Q (2013) J Power Sources 222:196–201

    Article  CAS  Google Scholar 

  16. Jung HG, Venugopal N, Scrosati B, Sun YK (2013) J Power Sources 221:266–271

    Article  CAS  Google Scholar 

  17. Wang YY, Hao YJ, Lai QY, Lu JZ, Chen YD, Ji XY (2008) Ionics 14:85–88

    Article  CAS  Google Scholar 

  18. Park KS, Benayad A, Kang DJ, Doo SG (2008) J Am Chem Soc 130:14930–14931

    Article  CAS  Google Scholar 

  19. Lu L, Wang JZ, Zhu XB, Gao XW, Liu HK (2011) J Power Sources 196:7025–7029

    Article  CAS  Google Scholar 

  20. Chen CH, Hwang BJ, Do JS, Weng JH, Venkateswarlu M, Cheng MY, Santhanam R, Ragavendran K, Lee JF, Chen JM, Liu DG (2010) Electrochem Commun 13:496–498

    Article  Google Scholar 

  21. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  22. Chou CS, Lin YJ, Yang RY, Liu KH (2011) Adv Powder Technol 22:31–42

    Article  CAS  Google Scholar 

  23. Qiao Y, Bao SJ, LI CM, Cui XQ, Lu ZS, Guo J (2008) ACS Nano 2:113–119

    Article  CAS  Google Scholar 

  24. Konstantinov K, Wang GX, Lao ZJ, Liu HK, Devers T (2009) J Nanosci Nanotechnol 9:1263–1267

    Article  CAS  Google Scholar 

  25. Lang XY, Hirata A, Fujita T, Chen MW (2011) Nat Nanotechnol 6:232–236

    Article  CAS  Google Scholar 

  26. Wang B, Chen JS, Wang ZY, Madhavi S, Lou XW (2012) Adv Energy Mater 2:1188–1192

    Article  Google Scholar 

  27. Wu MS, Lin YP (2011) Electrochim Acta 56:2068–2073

    Article  CAS  Google Scholar 

  28. Hosono E, Fujihara S, Honma I, Zhou H (2006) Electrochem Commun 8:284–288

    Article  CAS  Google Scholar 

  29. Shembel EM, Apostolova RD, Nagirnyi VM (2004) Russ J Electrochem 40:36–43

    Article  CAS  Google Scholar 

  30. Lee KT, Cho J (2011) Nano Today 6:28–41

    Article  CAS  Google Scholar 

  31. Wang XH, Li XW, Sun XL, Li F, Liu QM, Wang Q, He D (2011) J Mater Chem 21:3571–3573

    Article  CAS  Google Scholar 

  32. Yuan L, Guo ZP, Konstantinov K, Munroe P, Liu HK (2006) Electrochem Solid-State Lett 9:A524–A528

    Article  CAS  Google Scholar 

  33. Wang Y, Qin QZ (2002) J Electrochem Soc 149:A873–A878

    Article  CAS  Google Scholar 

  34. An LP, Gao XP, Li GR, Yan TY, Zhu HY, Shen PW (2008) Electrochim Acta 53:4573–4579

    Article  CAS  Google Scholar 

  35. Lu HW, Li D, Sun K, Li YS, Fu ZW (2009) Solid State Sci 11:982–987

    Article  CAS  Google Scholar 

  36. Wang C, Wang D, Wang Q, Chen H (2010) J Power Sources 195:7432–7437

    Article  CAS  Google Scholar 

  37. Cheng MY, Hwang BJ (2010) J Power Sources 195:4977–4983

    Article  CAS  Google Scholar 

  38. Zhang Y, Zhang C, Lin Y, Xiong DB, Wang D, Wu X, He D (2014) J Power Sources 250:50–57

    Article  CAS  Google Scholar 

  39. Mosa J, Velez JF, Reinosa JJ, Aparicio M, Yamaguchi A, Tadanaga K, Tatsumisago M (2013) J Power Sources 244:482–487

    Article  CAS  Google Scholar 

  40. Mansour AN (1994) Surf Sci Spectra 3:231–238

    Article  CAS  Google Scholar 

  41. Li CY, Zhang HJ, Chen ZQ (2012) Appl Surf Sci 266:17–21

    Article  Google Scholar 

  42. Wang B, Chen JS, Lou XW (2012) J Mater Chem 22:9466–9468

    Article  CAS  Google Scholar 

  43. Su LW, Zhou Z, Shen PW (2013) Electrochim Acta 87:180–185

    Article  CAS  Google Scholar 

  44. Tang YF, Yang L, Qiu Z, Huang JS (2009) J Mater Chem 19:5980–5984

    Article  CAS  Google Scholar 

  45. Chen XM, Guan XF, Li LP, Li GS (2012) J Power Sources 210:297–302

    Article  CAS  Google Scholar 

  46. Kataoka K, Takahashi Y, Kijima N, Hayakawa H, Akimoto J, Ohshima K (2009) Solid State Ionics 180:631–635

    Article  CAS  Google Scholar 

  47. Zhang H, Li GR, An LP, Yan TY, Gao XP, Zhu HY (2007) J Phys Chem C 111:6143–6148

    Article  CAS  Google Scholar 

  48. Zhang H, Gao XP, Li GR, Yan TY, Zhu HY (2008) Electrochim Acta 53:7061–7068

    Article  CAS  Google Scholar 

  49. Liu WJ, Shao D, Luo GE, Gao QZ, Yan GJ, He JR, Chen DY, Yu XY, Fang YP (2014) Electrochim Acta 133:578–582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported financially by the Guangdong Natural Science Foundation (Grant No. 9151064201000039), the Guangdong Science and Technology Planning Project (No. 2009B010900025), the National Natural Science Foundation of China (Nos. 51003034 and 21173088), the Key Academic Program of the 3rd phase ‘211 Project’ (No. 2009B010100001), and the State Key Laboratory of Motor Vehicle Biofuel Technology (No. 2013025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyuan Yu or Dongyang Chen.

Additional information

Congcong Zhang and Dan Shao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shao, D., Gao, Q. et al. Electrochemical lithium storage of Li4Ti5O12/NiO nanocomposites for high-performance lithium-ion battery anodes. J Solid State Electrochem 19, 1859–1866 (2015). https://doi.org/10.1007/s10008-015-2827-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2827-6

Keywords

Navigation