Skip to main content
Log in

Voltammetric and Potentiometric Determination of Cu2+ Using an Overoxidized Polypyrrole Based Electrochemical Sensor

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electropolymerization of pyrrole using an anionic sulfosalicylic acid ligand on the surface of electrode followed by overoxidation of membrane is performed to design a new modified electrode (ME) to measure specifically Cu2+ via complexation and intrusion of copper ion into the polymeric membrane. Copper binding property of ligand, overoxidation, and applied potential and polymeric structure of the modified electrodes are factors that encourage binding performance of Cu2+ into polymeric membrane of the electrode and lowering the detection limit. Presence of Cu2+ into the membrane was approved by Energy Dispersive Analysis X-Ray. Preconcentration of the analyte into modified electrode followed by differential pulse anodic stripping voltammetry is used to detect and measure Cu2+ quantitatively. Potentiometric measurements were conducted to test the ability of electrode to act as an ion selective for the direct measurement of Cu2+. Two interfering elements were Ag and Hg, but other elements such as Ni2+, Al3+, Zn2+, Ba2+, Mn2+, Co2+, Cd2+, and Pb2+even with 100 times more concentrated than analyte did not interfere. The electrode showed stable and reproducible surface with RSD less than 0.9%, range of linearity was from 1.0 × 10–8 to 1.0 × 10–3 M with a detection limit of 1.5 × 10–9 M. In the case of potentiometric measurements, RSD = 0.4%, linearity from 1.0 × 10–8 to 1.0 × 10–3 M, detection limit about 4.0 × 10–9 M and response time was 8 to 40 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Flato, J.B., Renaissance in polarographic and voltammetric analysis, Anal. Chem., 1972, vol. 44, p. 75A.

    Article  CAS  Google Scholar 

  2. Abdollahi, S., Preconcentration and determination of Pb2+ at an AlPO4 containing carbon paste electrode, Anal. Chim. Acta, 1995, vol. 304, p. 381.

    Article  CAS  Google Scholar 

  3. Baldwin, R.P. and Thomsen, K.N., Chemically modified electrodes in liquid chromatography detection: a review, Talanta, 1991, vol. 38, p. 1.

    Article  CAS  Google Scholar 

  4. Prabhu, S.Y., Baldwin, R.P., and Kryger, L., Preconcentration and determination of lead(II) at crown ether and cryptand containing chemically modified electrodes, Electroanalysis, 1989, vol. 1, p. 13.

    Article  CAS  Google Scholar 

  5. Agraz, R., Sevilla, M.T., and Hernandez, L., Chemically modified electrode for the simultaneous determination of trace metals and speciation analysis, Anal. Chim Acta, 1993, vol. 273, p. 205.

    Article  CAS  Google Scholar 

  6. Satyanarayana, M., Goud, K.Y., and Gobi, K.V., Conducting polymer-layered carbon nanotube as sensor interface for electrochemical detection of dacarbazine in-vitro, Electrocatalysis, 2017, vol. 8, p. 214.

    Article  CAS  Google Scholar 

  7. Asghari, E. and Malekian, S., Improvement of the electrocatalytic performance of platinum-free hierarchical Cu/polypyrrole/NiO anode for methanol oxidation via changing the morphology of polypyrrole sublayer by selfassembled pyrrole monomers and overoxidation, Synth. Met., 2017, vol. 229, p. 57.

    Article  CAS  Google Scholar 

  8. Otero, T.F. and Beaumont, S., Chemical sensors from the cooperative actuation of multistep electrochemical molecular machines of polypyrrole: voltammetric study, Sens. Actuators, B, 2017, vol. 253, p. 958.

    Article  CAS  Google Scholar 

  9. Price, J.F. and Baldwin, R.P., Preconcentration and determination of ferrocene carboxaldehyde at a chemically modified platinum electrode, Anal. Chem., 1980, vol. 52, p. 1940.

    Article  CAS  Google Scholar 

  10. Cheek, G.T. and Nelson, R.F., Applications of chemically modified electrodes to analysis of metal ions, Anal. Lett., 1978, vol. 11, p. 393.

    Article  Google Scholar 

  11. Situ, Bo., Zhao, J., and Lv, W., Naked-eye detection of copper(II) ions by a “clickable” fluorescent sensor, Sens. Actuators, B, 2017, vol. 240, p. 560.

    Article  CAS  Google Scholar 

  12. Zhou, X., Li, G., and Yang, P., A switching sensor of C–H bond breakage/formation regulated by mediating copper(II)’s complexation, Sens. Actuators, B, 2017, vol. 242, p. 56.

    Article  CAS  Google Scholar 

  13. Farajollahi, M., Woehling, V., and Plesse, C., Self-contained tubular bending actuator driven by conducting polymers, Sens. Actuators, A, 2016, vol. 249, p. 45.

    Article  CAS  Google Scholar 

  14. Li, P., Gao, Z., and Xu, Y., Determination of trace amounts of silver with a chemically modified carbon paste electrode, Anal. Chim. Acta, 1990, vol. 229, p. 213.

    Article  CAS  Google Scholar 

  15. Yan, R., Qiu, S., and Tong, L., Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs, Chem. Spec. Bioavailab., 2016, vol. 28, p. 72.

    Article  CAS  Google Scholar 

  16. Salles, M.O., Araujo, W.R., and Paixão, T.R.L.C., Development of a molecularly imprinted modified electrode to evaluate phenacetin based on the preconcentration of acetaminophe, J. Braz. Chem. Soc., 2016, vol. 27, p. 54.

    CAS  Google Scholar 

  17. Rahman, S.F., Min, K., and Park, S.H., Selective determination of dopamine with an amperometric biosensor using electrochemically pretreated and activated carbon/tyrosinase/Nafion-modified glassy carbon electrode, Biotechnol. Bioproc. E, 2016, vol. 21, p. 627.

    Article  CAS  Google Scholar 

  18. Attia, A.K., Frag, E.Y.Z., and Ahmed, H.E., Validated electroanalytical determination of flavoxate hydrochloride and tolterodine tartrate drugs in bulk, dosage forms and urine using modified carbon paste electrodes, Arab. J. Chem., 2016, vol. 11, p. 483.

    Article  Google Scholar 

  19. Borazjani, M., Mehdinia, A., and Ziaei, E., Enantioselective electrochemical sensor for R-mandelic acid based on a glass carbon electrode modified with multi-layers of biotin-loaded overoxidized polypyrrole and nanosheets of reduced grapheme oxide, Microchim. Acta, 2016, vol. 184, p. 611.

    Article  Google Scholar 

  20. Alizadeh, N., Kamalabadi, M., and Mohammadi, A., Determination of histamine and tyramine in canned fish samples by headspace solid-phase microextraction based on a nanostructured polypyrrole fiber followed by ion mobility spectrometry, Food Anal. Method, 2017, vol. 10, p. 3001.

    Article  Google Scholar 

  21. Zhao, Y., Lv, Z., and Wang, Y., Combination of Fe–Mn based Li-rich cathode materials and conductingpolymer polypyrrole nanowires with high rate capability, Ionics, 2017, vol. 24, p. 51.

    Article  Google Scholar 

  22. Genova, F.K.M., Premalatha, M., and Selvasekarapandian, S., Lithium ionconducting polymer electrolytes based on PVA–PAN doped with lithium triflate, Ionics, 2017, vol. 23, p. 2727.

    Article  Google Scholar 

  23. Oyama, N. and Anson, F.C., Polymeric ligands as anchoring groups for the attachment of metal complexes to graphite electrode surfaces, J. Am. Chem. Soc., 1979, vol. 101, p. 3450.

    Article  CAS  Google Scholar 

  24. Oyama, N. and Anson, F.C., Electrostatic binding of metal complexes to electrode surfaces coated with highly charged polymeric films, J. Electrochem. Soc., 1980, vol. 127, p. 247.

    Article  CAS  Google Scholar 

  25. Prabhu, S.Y. and Baldwin, R.P., Chemical preconcentration and determination of copper at a chemically modified carbon-paste electrode containing 2,9-dimethyl-1,10-phenanthroline, Anal. Chem., 1987, vol. 59, p. 1074.

    Article  CAS  Google Scholar 

  26. Zanganeh, A.R. and Amini, M.K., Polypyrrole-modified electrodes with induced recognition sites for potentiometric and voltammetric detection of copper(II) ion, Sens. Actuators, B, 2008, vol. 135, p. 358.

    Article  CAS  Google Scholar 

  27. Beck, F., Braun, P., and Oberst, M., Organic electrochemistry in the solid state-overoxidation of polypyrrole, Bunsen-Ges. Phys.Chem., Ber., 1987, vol. 91, p. 967.

    CAS  Google Scholar 

  28. Ge, H.L., Qi, G.J., and Kang, E.T., Study of overoxidized polypyrrole using X-ray photoelectron spectroscopy, Polymer, 1994, vol. 35, p. 504.

    Article  CAS  Google Scholar 

  29. Ersoz, A., Gavalas, V.G., and Bachas, L.G., Potentiometric behavior of electrodes based on overoxidized polypyrrole film, Anal. Bioanal. Chem., 2002, vol. 372, p. 786.

    Article  Google Scholar 

  30. Bobacka, J., Ivaska, A., Lewenstam, A., Potentiometric ion sensors, Chem. Rev., 2008, vol. 108, p. 329.

    Article  CAS  Google Scholar 

  31. Liu, A.S. and Oliveira, M.A.S., Electrodeposition of polypyrrole films on aluminum from tartrate aqueous solution, J. Braz. Chem. Soc., 2007, vol. 18, p. 143.

    Article  CAS  Google Scholar 

  32. Prissanaroon-Ouajai, W., Pigram, P.J., and Jones, R., A sensitive and highly stable polypyrrole-based pH sensor with hydroquinone monosulfonate and oxalate co-doping, Sens. Actuators, B, 2009, vol. 138, p. 504.

    Article  CAS  Google Scholar 

  33. Tietje-Girault, J., de León, C.P., and Walsh, F.C., Electrochemically deposited polypyrrole films and their characterization, Surf. Coat. Technol., 2007, vol. 201, p. 6025.

    Article  CAS  Google Scholar 

  34. Otero, T.F. and Delarreta, E., Electrochemical control of morphology adherence, appearance and growth of pplprrole films, Synth. Met., 1988, vol. 26, p. 79.

    Article  CAS  Google Scholar 

  35. Randjelović, P., Veljković, S., and Stojiljković, N., The beneficial biological properties of salicylic acid, Acta Fac. Med. Nais., 2015, vol. 32, p. 259.

    Article  Google Scholar 

  36. Madan, R.K. and Levitt, J., A review of toxicity from topical salicylic acid preparations, J. Am. Acad. Dermatol., 2014, vol. 70, p. 788.

    Article  CAS  Google Scholar 

  37. Praveen, K., Madhavi, D.S.S., and Anil Kumar, K., Coordination chemistry of salicylic acid, Int. J. Eng. Sci. Inv., 2016, vol. 05, p. 08.

  38. Yin, M.C., Ai, C.C., and Yuan, L.J., Synthesis, structure and luminescent property of a binuclear terbium complex [Tb2(Hsal)8(H2O)2][(Hphen)2] · 2H2O, J. Mol. Struct., 2004, vol. 691, p. 33.

    Article  CAS  Google Scholar 

  39. Chen, H.J., Lin, Z.Y., and Li, M.Y., A new, efficient, and inexpensive copper(II)/salicylic acid complex catalyzed Sonogashira-type cross-coupling of haloarenes and iodoheteroarenes with terminal alkynes, Tetrahedron, 2010, vol. 66, p. 7755.

    Article  CAS  Google Scholar 

  40. Wenb, J., Zhoua, L., and Jinb, L., Overoxidized polypyrrole/multi-walled carbon nanotubes composite modified electrode for in vivo liquid chromatography-electrochemical detection of dopamine, J. Chrom. B, 2009, vol. 877, p. 1793.

    Article  Google Scholar 

  41. Li, Y., Wang, P., and Wang, L., Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications, Biosens. Bioelectron., 2007, vol. 22, p. 3120.

    Article  CAS  Google Scholar 

  42. Khalkhali, R., Price, W.E., and Wallace, G.G., Quartz crystal microbalance studies of the effect of solution temperature on the ion-exchange properties of polypyrrole conducting electroactive polymers, React. Funct. Polym., 2003, vol. 56, p. 141.

  43. Brânzoi, V., Brânzoi, F., and Pilan, L., Electrochemical characterization of polypyrrole modified electrodes doped with large organic anions, Rev. Roum. Chim., 2007, vol. 52, p. 169.

Download references

ACKNOWLEDGMENTS

We sincerely thank Dr. Zanganeh and Dr. Faghihian for his precious guidance through all the research processes.

Funding

We would like to acknowledge the Islamic Azad University of Shahreza for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bagheri.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, A., Hassani Marand, M. Voltammetric and Potentiometric Determination of Cu2+ Using an Overoxidized Polypyrrole Based Electrochemical Sensor. Russ J Electrochem 56, 453–461 (2020). https://doi.org/10.1134/S1023193520060026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520060026

Keywords:

Navigation