Skip to main content
Log in

Enantioselective electrochemical sensor for R-mandelic acid based on a glassy carbon electrode modified with multi-layers of biotin-loaded overoxidized polypyrrole and nanosheets of reduced graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical method for quantitation of R-mandelic acid (R-MA). A glassy carbon electrode (GCE) was modified by electrochemical deposition of several layers of D-(+)-biotin-loaded overoxidized polypyrrole (OPPy-biot) on nanosheets of reduced graphene oxide. The deposited film was characterized by scanning electron microscopy, differential pulse voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy. The modified GCE is shown to enable stereoselective recognition of R-MA even in the presence of high concentrations of S-mandelic acid (S-MA), best at a voltage of around 1.5 V (vs. Ag/AgCl). The analytical performance of the electrode was studied by differential pulse voltammetry which revealed a linear range that extends over the 5 to 80 mM R-MA concentration range, a 1.5 mM detection limit, and an enanotiospecific characteristic toward R-MA. Under optimum conditions, the method displays high reproducibility and stability. It was applied to the determination of R-MA in a synthetic mixture and no interference was observed by S-MA.

Multi-layered of D-(+)-biotin-loaded overoxidized polypyrrole film on the nanosheets of reduced graphene oxide-modified glassy carbon electrode was fabricated by electrochemical deposition, which are shown to enable enantioselective determination of R-mandelic acid in the presence of high concentration of S-mandelic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Xu M-H, Lin J, Hu Q-S, Pu L (2002) Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching. J Am Chem Soc 124(47):14239–14246

    Article  CAS  Google Scholar 

  2. Bonrath W, Karge R, Netscher T, Roessler F, Spindler F (2009) Biotin–the chiral challenge. CHIMIA International Journal for Chemistry 63(5):265–269

    Article  CAS  Google Scholar 

  3. Bhuniya S, Park SM, Kim BH (2005) Biotin-amino acid conjugates: an approach toward self-assembled hydrogelation. Org Lett 7(9):1741–1744

    Article  CAS  Google Scholar 

  4. Tripathi A, Kumar A, Pandey PS (2012) Visual chiral recognition of mandelic acid and α-amino acid derivatives by enantioselective gel formation and precipitation. Tetrahedron Lett 53(43):5745–5748

    Article  CAS  Google Scholar 

  5. Guo H-S, Kim J-M, Chang S-M, Kim W-S (2009) Chiral recognition of mandelic acid on quartz crystal microbalance by vapor diffused molecular assembly method. J Nanosci Nanotechnol 9(5):2937–2943

    Article  CAS  Google Scholar 

  6. Kim BH, Bhuniya S, Park SM (2005) Biotin-amino acid conjugate useful as a Hydrogelator and hydrogel prepared therefrom. Google Patents,

  7. Tu F-Y, Yu L-Y, Yu J-G, Chen X-Q, Fu Q, Jiao F-P, Peng Z-G, Zhang T (2013) Graphene as tunable stationary phase additive for enantioseparation. Nano 8(06):1350069

    Article  Google Scholar 

  8. Zor E, Saf AO, Bingol H, Ersoz M (2014) Voltammetric discrimination of mandelic acid enantiomers. Anal Biochem 449:83–89

    Article  CAS  Google Scholar 

  9. Fu Y, Chen Q, Zhou J, Han Q, Wang Y (2012) Enantioselective recognition of mandelic acid based on γ-globulin modified glassy carbon electrode. Anal Biochem 421(1):103–107

    Article  CAS  Google Scholar 

  10. Zhang Q, Wang Y, Han Q, Guo L, Huang Y, Fu Y (2013) Enantioselective recognition of Mandelic acid based on hemoglobin and multiwall carbon nanotubes modified electrode. J Electrochem Soc 160(11):B213–B217

    Article  CAS  Google Scholar 

  11. Fu Y, Wang L, Chen Q, Zhou J (2011) Enantioselective recognition of chiral mandelic acid in the presence of Zn (II) ions by l-cysteine-modified electrode. Sensors Actuators B Chem 155(1):140–144

    Article  CAS  Google Scholar 

  12. Guo H-S, Kim J-M, Chang S-M, Kim W-S (2009) Chiral recognition of mandelic acid by L-phenylalanine-modified sensor using quartz crystal microbalance. Biosens Bioelectron 24(9):2931–2934

    Article  CAS  Google Scholar 

  13. Gerard M, Chaubey A, Malhotra B (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359

    Article  CAS  Google Scholar 

  14. Yu H, Jian X, Jin J, Zheng X-c, R-t L, G-c Q (2015) Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Microchim Acta 182(1–2):157–165

    Article  CAS  Google Scholar 

  15. Yang J, Cho M, Pang C, Lee Y (2015) Highly sensitive non-enzymatic glucose sensor based on over-oxidized polypyrrole nanowires modified with Ni (OH) 2 nanoflakes. Sensors Actuators B Chem 211:93–101

    Article  CAS  Google Scholar 

  16. Carelli D, Centonze D, De Giglio A, Quinto M, Zambonin PG (2006) An interference-free first generation alcohol biosensor based on a gold electrode modified by an overoxidised non-conducting polypyrrole film. Anal Chim Acta 565(1):27–35

    Article  CAS  Google Scholar 

  17. Majidi MR, Jouyban A, Asadpour-Zeynali K (2007) Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode. Electrochim Acta 52(21):6248–6253

    Article  CAS  Google Scholar 

  18. Majidi MR, Jouyban A, Asadpour-Zeynali K (2005) Genetic algorithm based potential selection in simultaneous voltammetric determination of isoniazid and hydrazine by using partial least squares (PLS) and artificial neural networks (ANNs). Electroanalysis 17(10):915–918

    Article  CAS  Google Scholar 

  19. Lin M (2015) A dopamine electrochemical sensor based on gold nanoparticles/over-oxidized polypyrrole nanotube composite arrays. RSC Adv 5(13):9848–9851

    Article  CAS  Google Scholar 

  20. Sasso L, Heiskanen A, Diazzi F, Dimaki M, Castillo-León J, Vergani M, Landini E, Raiteri R, Ferrari G, Carminati M (2013) Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations. Analyst 138(13):3651–3659

    Article  CAS  Google Scholar 

  21. Pihel K, Walker QD, Wightman RM (1996) Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry. Anal Chem 68(13):2084–2089

    Article  CAS  Google Scholar 

  22. Li J, Lin X (2007) Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sensors Actuators B Chem 124(2):486–493

    Article  CAS  Google Scholar 

  23. Jiang X, Lin X (2005) Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal Chim Acta 537(1):145–151

    Article  CAS  Google Scholar 

  24. Tsai T-C, Han H-Z, Cheng C-C, Chen L-C, Chang H-C, Chen J-JJ (2012) Modification of platinum microelectrode with molecularly imprinted over-oxidized polypyrrole for dopamine measurement in rat striatum. Sensors Actuators B Chem 171:93–101

    Article  Google Scholar 

  25. Alizadeh N, Eslami MR (2016) Nanostructured conducting molecularly imprinted polypyrrole based quartz crystal microbalance sensor for naproxen determination and its electrochemical impedance study. RSC Advances

    Google Scholar 

  26. Feng W, Liu C, Lu S, Zhang C, Zhu X, Liang Y, Nan J (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181(5–6):501–509

    Article  CAS  Google Scholar 

  27. Gou H, He J, Mo Z, Wei X, Hu R, Wang Y (2015) An electrochemical chiral sensor for tryptophan enantiomers based on reduced graphene oxide/1, 10-phenanthroline copper (ii) functional composites. RSC Adv 5(74):60638–60645

    Article  CAS  Google Scholar 

  28. Tang K, Yi J, Huang K, Zhang G (2009) Biphasic recognition chiral extraction: a novel method for separation of mandelic acid enantiomers. Chirality 21(3):390–395

    Article  CAS  Google Scholar 

  29. Martin A, Cocero M (2007) Separation of enantiomers by diastereomeric salt formation and precipitation in supercritical carbon dioxide: application to the resolution of mandelic acid. J Supercrit Fluids 40(1):67–73

    Article  CAS  Google Scholar 

  30. Aneja R, Luthra PM, Ahuja S (2010) High-performance liquid chromatography separation of enantiomers of mandelic acid and its analogs on a chiral stationary phase. Chirality 22(5):479–485

    CAS  Google Scholar 

  31. Lin J, Hu Q-S, Xu M-H, Pu L (2002) A practical enantioselective fluorescent sensor for mandelic acid. J Am Chem Soc 124(10):2088–2089

    Article  CAS  Google Scholar 

  32. Zor E, Patir IH, Bingol H, Ersoz M (2013) An electrochemical biosensor based on human serum albumin/graphene oxide/3-aminopropyltriethoxysilane modified ITO electrode for the enantioselective discrimination of d-and l-tryptophan. Biosens Bioelectron 42:321–325

    Article  CAS  Google Scholar 

  33. Xu L, Yang Y, Wang Y, Gao J (2009) Chiral salen Mn (III) complex-based enantioselective potentiometric sensor for l-mandelic acid. Anal Chim Acta 653(2):217–221

    Article  CAS  Google Scholar 

  34. Fu Y, Huang T, Chen B, Shen J, Duan X, Zhang J, Li W (2013) Enantioselective resolution of chiral drugs using BSA functionalized magnetic nanoparticles. Sep Purif Technol 107:11–18

    Article  CAS  Google Scholar 

  35. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  36. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  37. Han C, Hou X, Zhang H, Guo W, Li H, Jiang L (2011) Enantioselective recognition in biomimetic single artificial nanochannels. J Am Chem Soc 133(20):7644–7647

    Article  CAS  Google Scholar 

  38. Ramanavičius A, Ramanavičienė A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta 51(27):6025–6037

    Article  Google Scholar 

  39. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555–1567

    Article  CAS  Google Scholar 

  40. Lin M, Han H, Pan D, Zhang H, Su Z (2015) Voltammetric determination of total dissolved iron in coastal waters using a glassy carbon electrode modified with reduced graphene oxide, methylene blue and gold nanoparticles. Microchim Acta 182(3–4):805–813

    Article  CAS  Google Scholar 

  41. Moraes FC, Cesarino I, Cesarino V, Mascaro LH, Machado SA (2012) Carbon nanotubes modified with antimony nanoparticles: a novel material for electrochemical sensing. Electrochim Acta 85:560–565

    Article  CAS  Google Scholar 

  42. Hsueh C, Brajter-Toth A (1994) Electrochemical preparation and analytical applications of ultrathin overoxidized polypyrrole films. Anal Chem 66(15):2458–2464

    Article  CAS  Google Scholar 

  43. Bazzaoui M, Martins L, Bazzaoui E, Martins J (2002) New single-step electrosynthesis process of homogeneous and strongly adherent polypyrrole films on iron electrodes in aqueous medium. Electrochim Acta 47(18):2953–2962

    Article  CAS  Google Scholar 

  44. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Zakrzewski V, Montgomery Jr J, Stratmann RE, Burant J (1998) Gaussian 98, revision a. 7; gaussian. Inc, Pittsburgh, PA:12

  45. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  47. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+ G basis set for first-row elements, Li–F. J Comput Chem 4(3):294–301

    Article  CAS  Google Scholar 

  48. Iacob B-C, Bodoki E, Florea A, Bodoki AE, Oprean R (2015) Simultaneous Enantiospecific recognition of several β-blocker enantiomers using molecularly imprinted polymer-based electrochemical sensor. Anal Chem 87(5):2755–2763

    Article  CAS  Google Scholar 

  49. Ozkorucuklu SP, Sahin Y, Alsancak G (2008) Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors 8(12):8463–8478

    Article  CAS  Google Scholar 

  50. Palmisano F, Malitesta C, Centonze D, Zambonin P (1995) Correlation between permselectivity and chemical structure of overoxidized polypyrrole membranes used in electroproduced enzyme biosensors. Anal Chem 67(13):2207–2211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mehdinia.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borazjani, M., Mehdinia, A., Ziaei, E. et al. Enantioselective electrochemical sensor for R-mandelic acid based on a glassy carbon electrode modified with multi-layers of biotin-loaded overoxidized polypyrrole and nanosheets of reduced graphene oxide. Microchim Acta 184, 611–620 (2017). https://doi.org/10.1007/s00604-016-1997-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1997-y

Keywords

Navigation