Skip to main content
Log in

Platinum Electrocatalysts Deposited onto Composite Carbon Black–Metal Oxide Support

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

New nanostructured Pt/(SnO2/C)-electrocatalyst (20 wt % Pt) is synthesized via platinum chemical deposited onto composite SnO2/C-support microparticles (4 wt % Sn). The composite support was prepared beforehand using unique method of the tin electrochemical deposition onto disperse carbon black particles. It was shown by X-ray diffraction and transmission electron microscopy that the platinum and tin oxide nanoparticles distributed over the carbon surface are sized 2.4 and 2.9 nm, respectively. Electrochemical measurements showed the obtained catalyst to approach the commercial Pt/C HiSPEC 3000 catalyst (20 wt % Pt) with respect to its mass-activity in the oxygen electroreduction reaction and to be superior thereto as for the electrochemically active surface area, stability in stress test, and activity in methanol electrooxidation reaction. The peculiarities in electrochemical behavior of the synthesized Pt/(SnO2/C)-electrocatalyst can be explained by the SnO2 nanoparticle effect on the platinum nanoparticle nucleation/growth, as well as presence of Pt–SnO2–C triple junction nanostructure at the surface. The Pt/SnO2 contact provides stable platinum-to-support adhesion and asserts bifunctional catalysis mechanism of the methanol electrooxidation. And the Pt/C junctions provide for electron supplying/retraction to or from the platinum nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Debe, M.K., Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 2012, vol. 486, no. 7401, p. 43. https://doi.org/10.1038/nature11115

    Article  CAS  PubMed  Google Scholar 

  2. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, p. 191.

    Article  CAS  Google Scholar 

  3. Liao, H., Qiu, Z., Wan, Q., Wang, Z., Liu, Y., and Yang, N., Universal Electrode Interface for Electrocatalytic Oxidation of Liquid Fuels, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 20, p. 18055. https://doi.org/10.1021/am504926r

    Article  CAS  PubMed  Google Scholar 

  4. Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L., Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science, 2009, vol. 323, no. 5915, p. 760. https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  5. Jin, S., Chen, M., Dong, H., He, B., Lu, H., Su, L., Dai, W., Zhang, Q., and Zhang, X., Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction, J. Power Sources, 2015, vol. 274, p. 1173. https://doi.org/10.1016/j.jpowsour.2014.10.098

    Article  CAS  Google Scholar 

  6. Liu, S., Zhang, Q., Li, Y., Han, M., Gu, L., Nan, C., Bao, J., and Dai, Z., Five-Fold Twinned Pd2NiAg Nanocrystals with Increased Surface Ni Site Availability to Improve Oxygen Reduction Activity, J. Am. Chem. Soc., 2015, vol. 137, no. 8, p. 2820. https://doi.org/10.1021/ja5129154

    Article  CAS  PubMed  Google Scholar 

  7. Ma, T.Y., Ran, J., Dai, S., Jaroniec, M., and Qiao, S.Z., Phosphorus-Doped Graphitic Carbon Nitrides Grown in situ on Carbon-Fiber Paper: Flexible and Reversible Oxygen Electrodes, Angew. Chem. Int. Ed. 2014, vol. 54, no. 15, p. 4646. https://doi.org/10.1002/anie.201411125

    Article  CAS  Google Scholar 

  8. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Yu., and Volochaev, V.A., The relationship between activity and stability of deposited platinum-carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p. 531.

    Article  CAS  Google Scholar 

  9. Lim, C.S., Wang, L., Chua, C.K., Sofer, Z., Jankovský, O., and Pumera, M., High temperature superconducting materials as bi-functional catalysts for hydrogen evolution and oxygen reduction, J. Mater. Chem. A, 2015, vol. 3, no. 16, p. 8346. https://doi.org/10.1039/c4ta06767c

    Article  CAS  Google Scholar 

  10. Qiao, Y. and Li, C.M., Nanostructured catalysts in fuel cells, J. Mater. Chem., 2011, vol. 21, no. 12, p. 4027. https://doi.org/10.1039/c0jm02871a

    Article  CAS  Google Scholar 

  11. Hasche, F., Oezaslan, M., and Strasser, P., Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts, ChemCatChem., 2011, vol. 3, p. 1805.

    CAS  Google Scholar 

  12. Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskiy, I.N., and Guterman, V.E., Cu@Pt/C catalysts: synthesis, structure, activity in oxygen reduction reaction, In Advanced Materials – Techniques, Physics, Mechanics, and Applications, Parinov, I.A., Ed. Heidelberg: Springer Proceedings in Physics, vol. 193, 2017.

    Google Scholar 

  13. Gojković, S., Babić, B., Radmilović, V., and Krstajić, N., 2010, Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs, J. Electroanal. Chem., vol. 639, no. 1–2, p. 161. https://doi.org/10.1016/j.jelechem.2009.12.004

    Article  CAS  Google Scholar 

  14. Ho, V.T.T., Pan, C.-J., Rick, J., Su, W.-N., and Hwang, B.-J., Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction, J. Am. Chem. Soc., 2011, vol. 133, no. 30, p. 11716. https://doi.org/10.1021/ja2039562

    Article  CAS  PubMed  Google Scholar 

  15. Ignaszak, A., Song, C., Zhu, W., Wang, Y.-J., Zhang, J., Bauer, A., Baker, R., Neburchilov, V., Campbell, S., and Ye, S., Carbon–Nb0.07Ti0.93O2 composite supported Pt–Pd electrocatalysts for PEM fuel cell oxygen reduction reaction, Electrochim, Acta, 2012, vol. 75, p. 220. https://doi.org/10.1016/j.electacta.2012.04.111

    Article  CAS  Google Scholar 

  16. Jukk, K., Kongi, N., Tarre, A., Rosental, A., Treshchalov, A., Kozlova, J., Ritslaid, P., Matisen, L., Sammelselg, V., and Tammeveski, K., Electrochemical oxygen reduction behaviour of platinum nanoparticles supported on multi-walled carbon nanotube/titanium dioxide composites, J. Electroanal. Chem., 2014, vol. 735, p. 68. https://doi.org/10.1016/j.jelechem.2014.10.008

    Article  CAS  Google Scholar 

  17. Tiido, K., Alexeyeva, N., Couillard, M., Bock, C., Macdougall, B.R., and Tammeveski, K., Graphene–TiO2 composite supported Pt electrocatalyst for oxygen reduction reaction, Electrochim. Acta, 2013, vol. 107, p. 509. https://doi.org/10.1016/j.electacta.2013.05.155

    Article  CAS  Google Scholar 

  18. Cui, X., Shi, J., Chen, H., Zhang, L., Guo, L., Gao, J., and Li, J., Platinum/Mesoporous WO3 as a Carbon-Free Electrocatalyst with Enhanced Electrochemical Activity for Methanol Oxidation, J. Phys. Chem. B, 2008, vol. 112, no. 38, p. 12024. https://doi.org/10.1021/jp803565k

    Article  CAS  PubMed  Google Scholar 

  19. Ioroi, T., Siroma, Z., Fujiwara, N., Yamazaki, S.-I., and Yasuda, K., Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells, Electrochem. Commun., 2005, vol. 7, no. 2, p. 183. https://doi.org/10.1016/j.elecom.2004.12.007

    Article  CAS  Google Scholar 

  20. Lei, B., Xue, J., Jin, D., Ni, S., and Sun, H., Fabrication, annealing, and electrocatalytic properties of platinum nanoparticles supported on self-organized TiO2 nanotubes, Rare Metals, 2008, vol. 27, no. 5, p. 445. https://doi.org/10.1016/s1001-0521(08)60160-6

    Article  CAS  Google Scholar 

  21. Shim, J., Lee, C.-R., Lee, H.-K., Lee, J.-S., and Cairns, E.J., Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell, J. Power Sources, 2001, vol. 102, no. 1–2, p. 172. https://doi.org/10.1016/s0378-7753(01)00817-5

    Article  CAS  Google Scholar 

  22. Vayssilov, G.N., Lykhach, Y., Migani, A., Staudt, T., Petrova, G.P., Tsud, N., Skála, T., Bruix, A., Illas, F., Prince, K.C., Matolın, V., Neyman, K.M., and Libuda, J., Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles, Nature Materials, 2011, vol. 10, no. 4, p. 310. https://doi.org/10.1038/nmat2976

    Article  CAS  PubMed  Google Scholar 

  23. Wang, M., Guo, D.-J., and Li, H.-L., High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation, J. Solid State Chem., 2005, vol. 178, no. 6, p. 1996. https://doi.org/10.1016/j.jssc.2005.04.006

    Article  CAS  Google Scholar 

  24. Dou, M., Hou, M., Liang, D., Lu, W., Shao, Z., and Yi, B., SnO2 nanocluster supported Pt catalyst with high stability for proton exchange membrane fuel cells, Electrochim, Acta, 2013, vol. 92, p. 468. https://doi.org/10.1016/j.electacta.2013.01.070

    Article  CAS  Google Scholar 

  25. Nakada, M., Ishihara, A., Mitsushima, S., Kamiya, N., and Ota, K.-I., Effect of Tin Oxides on Oxide Formation and Reduction of Platinum Particles, Electrochem. Solid State Lett., 2007, vol. 10, no. 1. https://doi.org/10.1149/1.2382263

  26. Tripković, D., Stevanović, S., Gavrilović, A., Rogan, J., Lačnjevac, U., Kravić, T., and Jovanović, V.M., The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts, Electrocatalysis, 2017, vol. 9, no. 1, p. 76. https://doi.org/10.1007/s12678-017-0424-4

    Article  CAS  Google Scholar 

  27. Frolova, L.A., Dobrovolsky, Y.A., and Bukun, N.G., Oxide supported platinum electrocatalysts for hydrogen and alcohol fuel cells, Russ. J. Electrochem., 2011, vol. 47, no. 6, p. 697. https://doi.org/10.1134/s1023193511060024

    Article  CAS  Google Scholar 

  28. Antoniassi, R., Silva, J., Neto, A.O., and Spinacé, E., Synthesis of Pt SnO2/C electrocatalysts containing Pt nanoparticles with preferential (100) orientation for direct ethanol fuel cell, Appl. Catal. B Environ., 2017, vol. 218, p. 91. https://doi.org/10.1016/j.apcatb.2017.06.031

    Article  CAS  Google Scholar 

  29. Jia, J., Wang, H., Ji, S., Yang, H., Li, X., and Wang, R., SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction, Electrochim. Acta, 2014, vol. 141, p. 13. https://doi.org/10.1016/j.electacta.2014.07.020

    Article  CAS  Google Scholar 

  30. Huang, M., Zhang, J., Wu, C., and Guan, L., Pt nanoparticles Densely Coated on SnO2-Covered Multiwalled Carbon Nanotubes with Excellent Electrocatalytic Activity and Stability for Methanol Oxidation, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 32, p. 26921. https://doi.org/10.1021/acsami.7b07866

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, K., Feng, C., He, B., Dong, H., Dai, W., Lu, H., and Zhang, X., An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction, J. Electroanal. Chem., 2016, vol. 781, p. 198. https://doi.org/10.1016/j.jelechem.2016.11.002

    Article  CAS  Google Scholar 

  32. Zhang, N., Zhang, S., Du, C., Wang, Z., Shao, Y., Kong, F., Lin, Y., and Yin, G., Pt/Tin Oxide/Carbon Nanocomposites as Promising Oxygen Reduction Electrocatalyst with Improved Stability and Activity, Electrochim. Acta, 2014, vol. 117, p. 413. https://doi.org/10.1016/j.electacta.2013.11.139

    Article  CAS  Google Scholar 

  33. Parrondo, J., Mijangos, F., and Rambabu, B., Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell, J. Power Sources, 2010, vol. 195, no. 13, p. 3977. https://doi.org/10.1016/j.jpowsour.2010.01.027

    Article  CAS  Google Scholar 

  34. Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., Electrochemical dispersion technique for preparation of hybrid MOx–C supports and Pt/MOx–C electrocatalysts for low-temperature fuel cells, J. Appl. Electrochem., 2016, vol. 46, no. 12, p. 1245. https://doi.org/10.1007/s10800-016-1006-5

    Article  CAS  Google Scholar 

  35. Kuriganova, A.B. and Smirnova, N.V., Pt/SnOx–C composite material for electrocatalysis, Mendeleev Commun., 2014, vol. 24, no. 6, p. 351. https://doi.org/10.1016/j.mencom.2014.11.013

    Article  CAS  Google Scholar 

  36. Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts, Inorg. Mater., 2015, vol. 51, no. 12, p. 1258. https://doi.org/10.1134/s0020168515120018

    Article  CAS  Google Scholar 

  37. Guterman, V.E., Lastovina, T.A., Belenov, S.V., Tabachkova, N.Y., Vlasenko, V.G., Khodos, I.I., and Balakshina, E.N., PtM/C (M = Ni, Cu, or Ag) electrocatalysts: effects of alloying components on morphology and electrochemically active surface areas, J. Solid State Electrochem., 2013, vol. 18, no. 5, p. 1307. https://doi.org/10.1007/s10008-013-2314-x

    Article  CAS  Google Scholar 

  38. Vliet, D.V.D., Strmcnik, D.S., Wang, C., Stamenkovic, V.R., Markovic, N.M., and Koper, M.T., On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction, J. Electroanal. Chem., 2010, vol. 647, no. 1, p. 29. https://doi.org/10.1016/j.jelechem.2010.05.016

    Article  CAS  Google Scholar 

  39. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique, J. Electrochem. Soc., 2015, vol. 162, no. 12. https://doi.org/10.1149/2.0551512jes

  40. Jeon, M.K., Zhang, Y., and Mcginn, P.J., A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction, Electrochim. Acta, 2010, vol. 55, no. 19, p. 5318. https://doi.org/10.1016/j.electacta.2010.04.056

    Article  CAS  Google Scholar 

  41. Fabbri, E., Rabis, A., Kötz, R., and Schmidt, T.J., Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues, Phys. Chem. Chem. Phys., 2014, vol. 16, no. 27, p. 13672. https://doi.org/10.1039/c4cp00238e

    Article  CAS  PubMed  Google Scholar 

  42. Wang, J., Yin, G., Shao, Y., Zhang, S., Wang, Z., and Gao, Y., Effect of carbon black support corrosion on the durability of Pt/C catalyst, J. Power Sources, 2007, vol. 171, no. 2, p. 331. https://doi.org/10.1016/j.jpowsour.2007.06.084

    Article  CAS  Google Scholar 

  43. Thompsett, D., Catalysts for the proton exchange membrane fuel cell, in: Handbook of Fuel Cells. Fundamentals, Technology and Applications, Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., New York: Wiley, 2003, p. 6–23.

    Google Scholar 

  44. Park, Yu-Ch., Kakinuma, K., Uchida, M., Uchida, H., and Watanabe, M., Deleterious effects of interim cyclic voltammetry on Pt/carbon black catalyst degradation during start-up/shutdown cycling evaluation, Electrochim. Acta, 2014, vol. 123, p. 84.

    Article  CAS  Google Scholar 

  45. Eris, S., Daşdelen, Z., and Sen, F., Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells, J. Colloid Interface Sci., 2018, vol. 513, p. 767. https://doi.org/10.1016/j.jcis.2017.11.085

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is performed within the framework of the state target of the Ministry of education and sciences of RF (topic no. 13.3005.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Novomlinskiy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novomlinskiy, I.N., Guterman, V.E., Danilenko, M.V. et al. Platinum Electrocatalysts Deposited onto Composite Carbon Black–Metal Oxide Support. Russ J Electrochem 55, 690–700 (2019). https://doi.org/10.1134/S1023193519070097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519070097

Keywords:

Navigation