Skip to main content
Log in

Composite Pt/(SnO2/C) and PtSnNi/C Catalysts for Oxygen Reduction and Alcohol Electrooxidation Reactions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of tin and tin-nickel on a highly dispersed carbon material is used to obtain composite supports. These composite supports were used in the Pt(0) nanoparticles deposition from Pt(IV) solution by chemical reduction. The composition, structure, and activity of the obtained Pt(SnO2/C) and PtSnNi/C catalysts in the oxygen reduction and alcohol electrooxidation reactions were studied. The composite-support-based platinum catalysts exhibit higher activity in the reactions of alcohols electrooxidation in comparison with the commercial Pt/C analogue. Trimetallic PtSnNi/C catalysts are the most promising materials for the electrooxidation of alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ioroi, T., Siroma, Z., Yamazaki, S., and Yasuda, K., Electrocatalysts for PEM Fuel Cells, Advanced Energy Mater., 2018, vol. 9, no. 23, p. 1801284.

    Article  CAS  Google Scholar 

  2. Thompsett, D., Catalysts for the Proton Exchange Membrane Fuel Cell, Ed.: Vielstich, W., New York: Wiley, 2003, vol. 3, no. 6, p. 1.

  3. Zhang, J., Wang, X., Wu, C. Wang, H, Yiand, B., and Zhang, H., Preparation and characterization of Pt/C catalysts for PEMFC cathode: effect of different reduction methods, React. Kinet. Catal. Lett., 2004, vol. 83, no. 2, p. 229.

    Article  CAS  Google Scholar 

  4. Chen, J., Jiang, C., Yang, X. Feng, L., B. Gallogly, E., and Wang, R., Studies on how to obtain the best catalytic activity of Pt/C catalyst by three reduction routes for methanol electrooxidation, Electrochem. Commun., 2011, vol. 13, no. 4, p. 314.

    Article  CAS  Google Scholar 

  5. Prabhuram, J., Zhao, T.S., Wong, C.W., and Guo, J.W., Synthesis and physical/electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells, J. Power Sources, 2004, vol. 134, p. 1.

    Article  CAS  Google Scholar 

  6. Guterman, V.E., Lastovina, T.A., Belenov, S.V., Tabachkova, N.Yu., Vlasenko, V.G., Khodos, I.I., and Balakshina, E.N., PtM/C (M = Ni, Cu, or Ag) electrocatalysts: Effects of alloying components on morphology and electrochemically active surface areas, J. Solid State Electrochem., 2014, vol. l18, no. 5, p. 1307.

  7. Guterman, V.E., Belenov, S.V., Lastovina, T.A., Fokina, E.P., Prutsakova, N.V., and Konstantinova, Ya.B., Microstructure and electrochemically active surface area of PtM/C electrocatalysts, Russ. J. Electrochem., 2011, vol. 47, p. 933.

    Article  CAS  Google Scholar 

  8. Petrii, O.A., Electrosynthesis of nanostructures and nanomaterials, Uspekhi khimii, 2015, vol. 84, p.159.

    Article  CAS  Google Scholar 

  9. Yohannes, W., Belenov, S.V., Guterman, V.E., Skibina, L.M., Volotchaev, V.A., and Lyanguzov, N.V., Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid, J. Appl. Electrochem., 2015, vol. 45, p. 623.

    Article  CAS  Google Scholar 

  10. Leontyev, I.N., Kuriganova, A.B., Kudryavtsev, Y., Dkhil, B., and Smirnova, N.V., New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells, Appl. Catal. A, 2012, vols. 431–432, p. 120.

    Article  CAS  Google Scholar 

  11. Moffat, T.P., Mallett, J.J., and Hwang, Sun-Mi., Oxygen Reduction Kinetics on Electrodeposited Pt, Pt100 – xNix, and Pt100 – xCox, J. Electrochem. Soc., 2009, vol. 156, p. 238.

    Article  CAS  Google Scholar 

  12. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis, Appl. Catal. B: Environmental, 2005, vol. 56, p. 9.

    Article  CAS  Google Scholar 

  13. Sharma, S. and Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts–A review, J. Power Sources, 2012, vol. 208, p. 96.

    Article  CAS  Google Scholar 

  14. Zhang, M., Yan, Z., Li, Y., Jing, J., and Xie, J., Preparation of cobalt silicide on graphene as Pt electrocatalyst supports for highly efficient and stable methanol oxidation in acidic media, Electrochim. Acta, 2015, vol. 161, p. 48.

    Article  CAS  Google Scholar 

  15. Zhao, R., Fu, G., Chen, Z., Tang, Y., Wang, Y., and Huang, S., Novel strategy for the synthesis of hollow Pt–Cu tetradecahedrons as an efficient electrocatalyst toward methanol oxidation, Cryst. Eng. Comm., 2019, vol. 21, p. 1903.

    Article  CAS  Google Scholar 

  16. Guterman, V.E., Novomlinsky, I.N., Skibina, L.M., and Mauer, D.K., Russia Patent 2656914, 2018.

  17. Guterman, V.E., Novomlinsky, I.N., Alekseenko, A.A., Belenov, S.V., Tsvetkova, G.G., and Balakshina, E.N., Russia Patent 2616190, 2017.

  18. Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., Electrochemical dispersion technique for preparation of hybrid MOx–C supports and Pt/MOx–C electrocatalysts for low temperature fuel cells, J. Appl. Electrochem., 2016, vol. 46, no. 12, p. 1245.

    Article  CAS  Google Scholar 

  19. Saha, M.S., Li, R., Cai, M., and Suna, X., High Electrocatalytic Activity of Platinum Nanoparticles on SnO2 Nanowire-Based Electrodes, Electrochem. Solid-State Lett., 2007, vol. 10, no. 8, p. 130.

    Article  CAS  Google Scholar 

  20. Lee, J.H. and Park, S.J.J., Nanoscaled oxide thin films for energy conversion, Am. Ceram. Soc., 1993, vol. 76, p. 777.

    Article  CAS  Google Scholar 

  21. Williams, G. and Coles, G.S.V., Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique, J. Mater. Chem., 1998, vol. 8, p. 1657.

    Article  CAS  Google Scholar 

  22. Willett, M.J., Burganos, V.N., Tsakiroglou, C.D., and Payatakes, A.C., Gas sensing and structural properties of variously pretreated nanopowder tin(IV) oxide samples, Sens. Actuators B, 1998, vol. 53, p. 76.

    Article  CAS  Google Scholar 

  23. Zhang, J. and Gao, L., Synthesis of SnO2 Nanoparticles by the Sol–gel Method From Granulated Tin, Chem. Lett., 2003, vol. 32, p. 458.

    Article  Google Scholar 

  24. De Monredon, S., Cellot, A., Ribot, F., Sanchez, C., Armelao, L., Gueneau, L., and Delattre, L., Synthesis and characterization of crystalline tin oxide nanoparticles, J. Mater. Chem., 2002, vol. 12, p. 2396.

    Article  CAS  Google Scholar 

  25. Kumar, P., Khadtare, S., Park, J., and Yadav, B.C., Fabrication of leaf shaped SnO2 nanoparticles via sol–gel route and its application for the optoelectronic humidity sensor, Mater. Lett., 2020, vol. 278, p. 128451.

    Article  CAS  Google Scholar 

  26. Song, K.C. and Kang, Y., Preparation of high surface area tin oxide powders by a homogeneous precipitation method, Mater. Lett., 2000, vol. 42, p. 283.

    Article  CAS  Google Scholar 

  27. Meiling, Dou, Ming, Hou, Dong, Liang, Wangting, Lu, Zhigang, Shao, and Baolian, Yi, SnO2 nanocluster supported Pt catalyst with high stability for proton exchange membrane fuel cells, Electrochim. Acta, 2013, vol. 92, p. 468.

    Article  CAS  Google Scholar 

  28. Zhang, K., Feng, C., He, B., Dong, H., Dai, W., Lu H., and Zhang, X., An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction, J. Electroanal. Chem., 2016, vol. 781, p. 198.

    Article  CAS  Google Scholar 

  29. Jiang, L. Colmenares, L. Jusys, Z., Sun, G., and Behm, R., Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt : Sn ratio, Electrochim. Acta, 2007, vol. 53, p. 377.

    Article  CAS  Google Scholar 

  30. Gharibi, H., Sadeghi, S., and Golmohammadi, F., Electrooxidation of Ethanol on highly active and stable carbon supported PtSnO2 and its application in passive direct ethanol fuel cell: Effect of tin oxide synthesis method, Electrochim. Acta, 2016, vol. 190, p. 1100.

    Article  CAS  Google Scholar 

  31. Li, H., Sun, G., Cao, L., Jiang, L., and Xin, Q., Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation, Electrochim. Acta, 2007, vol. 52, no. 24, p. 6622.

    Article  CAS  Google Scholar 

  32. Kim, I., Bong, S., Woo, S., Mahajan, R. K., and Kim, H., Highly active 40 wt % PtRu/C anode electrocatalysts for PEMFCs prepared by an improved impregnation method, Int. J. Hydrogen Energy, 2011, vol. 36, no. 2, p. 1803.

    Article  CAS  Google Scholar 

  33. Shi, Y., Zhu, W., Shi, H., Liao F., Fan, Z., and Shao, M., Mesocrystal PtRu supported on reduced graphene oxide as catalysts for methanol oxidation reaction, J. Colloid Interface Sci., 2019, vol. 557, p. 729.

    Article  CAS  PubMed  Google Scholar 

  34. Parreira, L.S., da Silva, J.C.M., D’Villa-Silva, M., Simões, F.C., Garcia, S., Gaubeur, I., Cordeiro, M.A.L., Leite, E.R., and dos Santos, M.C., PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study, Electrochim. Acta., 2013, vol. 96, p. 243.

    Article  CAS  Google Scholar 

  35. Bonesi, A., Garaventa, G., Triaca, W., and Castroluna, A., Synthesis and characterization of new electrocatalysts for ethanol oxidation Int. J. Hydrogen Energy, 2008, vol. 33, № 13, p. 3499.

    Article  CAS  Google Scholar 

  36. Parreira, L.S., Antoniassi, R.M., Freitas, I.C., de Oliveira, D.C., Spinacé, E.V., Camargo, P.H.C., and dos Santos, M.C., MWCNT–COOH supported PtSnNi electrocatalysts for direct ethanol fuel cells: Low Pt content, selectivity and chemical stability, Renewable Energy, 2019, vol. 143, p. 1397.

    Article  CAS  Google Scholar 

  37. Flórez-Montaño, J., García, G., Guillén-Villafuerte, O., Rodríguez, J.L., Planes, G.A., and Pastor, E., Mechanism of ethanol electrooxidation on mesoporous Pt electrode in acidic medium studied by a novel electrochemical mass spectrometry set-up, Electrochim. Acta, 2016, vol. 209, p. 121.

    Article  CAS  Google Scholar 

  38. Petrii, O.A., The progress in understanding the mechanisms of methanol and formic acid electrooxidation on platinum group metals (a review), Russ. J. Electrochem., 2019, vol. 55, p. 1.

    Article  CAS  Google Scholar 

  39. Novomlinskiy, I. N., Guterman, V.E., Danilenko, M.V., and Volochaev, V.A., Platinum Electrocatalysts Deposited onto Composite Carbon Black–Metal Oxide Support, Russ. J. Electrochem., 2019, vol. 55, p. 690.

    Article  CAS  Google Scholar 

  40. Zenin, V.V., Spiridonov, B.A., Berezina, N.N., and Kochergin, A.V., Study of electrodeposition and structure of tin–nickel alloy coatings (in Russian), Tekhnologii v elektron. Promyshlennosti, 2007, vol. 7, p. 32.

    Google Scholar 

  41. Suryanarayana, C. and Norton, M.G., X-ray diffraction: a practical approach Suryanarayana C, Springer Sci. Business Media, 2013, p. 273.

    Google Scholar 

  42. Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N.R., Moeck, P., Downs, R.T., and Le Bail, A., Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Res., 2012, vol. 40, no. D1, p. 420.

    Article  CAS  Google Scholar 

  43. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Y., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts (in Russian), Nanotechnologies in Russia, 2016, vol. 11, p. 287.

    Article  CAS  Google Scholar 

  44. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness, J. Electrochem. Soc., 2015, vol. 162, p. 1384.

    Article  CAS  Google Scholar 

  45. Kim, J.H., Choi, S.M., Nam, S.H., Seo, M.H., Choi, S.H., and Kim, W.B., Influence of Sn content on PtSn/C catalysts for electrooxidation of C1–C3 alcohols: synthesis, characterization, and electrocatalytic activity, Appl. Catal. B, 2008, vol. 82, p. 89.

    Article  CAS  Google Scholar 

  46. Colmati, F., Antolini, E., and Gonzalez, E.R., Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: effect of thermal treatment, Appl. Catal. B, 2007, vol. 73, p. 106.

    Article  CAS  Google Scholar 

  47. Antolini, E., Salgado, J.R.C., and Gonzalez, E.R., Carbon supported Pt75M25 (M 1/4 Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells, J. Electroanal. Chem., 2005, vol. 580, p. 145.

    Article  CAS  Google Scholar 

  48. Correa, P.S., da Silva, E.L., da Silva, R.F., Radtke, C., Moreno, B., Chinarro, E., and Malfatti, C.F., Effect of decreasing platinum amount in Pt–Sn–Ni alloys supported on carbon as electrocatalysts for ethanol electrooxidation, Int. J. Hydrogen Energy, 2012, vol. 37, no. 11, p. 9314.

    Article  CAS  Google Scholar 

  49. Beyhan, S., Léger, J.-M., and Kadırgan, F., Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell, Appl. Catal. B: Environmental, 2013, vol. 130, p. 305.

    Article  CAS  Google Scholar 

  50. Kumeda, T., Otsuka, N., Tajiri, H., Sakata, O., Hoshi, N., and Nakamura, M., Interfacial structure of PtNi surface alloy on Pt (111) electrode for oxygen reduction reaction, ACS Omega, 2017, vol. 2, p. 1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stamenković, V., Schmidt, T.J., Ross, P.N., and Marković, N.M., Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces, J. Phys. Chem., 2002, vol. 106, p. 11970.

    Article  CAS  Google Scholar 

  52. Jenkins, R. and Snyder, R.L., Introduction to X-ray Powder Diffractometry, Wiley, 1996.

    Book  Google Scholar 

  53. Travitsky, N., Ripenbein, T., Golodnitsky, D., Rosenberg, Y., Burshtein, L., and Peled, E., Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells, J. Power Sources, 2006, vol. 161, p. 782.

    Article  CAS  Google Scholar 

  54. Wiltshire, R.J.K., King, C.R., Rose, A., Wells, P.P., Davies, H., Hogarth, M.P., Thompsett, D., Theobald, B., Mosselmans, F.W., Roberts, M., and Russell, A.E., Effects of composition on structure and activity of PtRu/C catalysts, Phys. Chem. Chem. Phys., 2009, vol. 11, no. 13, p. 2305.

    Article  CAS  PubMed  Google Scholar 

  55. Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.

    Article  CAS  Google Scholar 

  56. Chen, Y. and Wang, J., Atomic layer deposition assisted Pt–SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells, Int. J. Hydrogen Energy, 2011, vol. 36, no. 17, p. 11085.

    Article  CAS  Google Scholar 

  57. Ruiz Camacho, B., Morais, C., Valenzuela, M.A., and Alonso-Vante, N., Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites, Catal. Today, 2013, vol. 202, p. 36.

    Article  CAS  Google Scholar 

  58. Khorasani-Motlagh, M., Noroozifar, M., and Ekrami-Kakhki, M.-S., Investigation of the nanometals (Ni and Sn) in platinum binary and ternary electrocatalysts for methanol electrooxidation, Int. J. Hydrogen Energy, 2011, vol. 36, p. 11554.

    Article  CAS  Google Scholar 

  59. Menshchikov, V., Alekseenko, A., Guterman, V., Nechitailov, A., Glebova, N., Tomasov, A., Spiridonova, O., Belenov, S., Zelenina, N., and Safronenko, O., Effective platinum–copper catalysts for methanol oxidation and oxygen reduction in proton-exchange membrane fuel cell, Nanomaterials, 2020, vol. 10, no. 4, article No. 742.

    Article  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors acknowledged the assistance from A.Yu. Nikulin in the registration of X-ray patterns for the studied materials.

Funding

The reported study was funded by the Ministry of science and higher education RF under State contract no. 0852-2020-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Mauer.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauer, D.K., Belenov, S.V., Skibina, L.M. et al. Composite Pt/(SnO2/C) and PtSnNi/C Catalysts for Oxygen Reduction and Alcohol Electrooxidation Reactions. Russ J Electrochem 57, 898–910 (2021). https://doi.org/10.1134/S1023193521060069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521060069

Keywords:

Navigation