Skip to main content
Log in

The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (Stevanović et al., J. Phys. Chem. C, 118 (2014) 278–289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Li, H. Zheng, G. Han, Y. Xiao, Y. Li, Facile synthesis of binary PtRu nanoflowers for advanced electrocatalysts toward methanol oxidation. Catal. Commun. 92, 95–99 (2017)

    Article  CAS  Google Scholar 

  2. A.B. Delpeuch, F. Maillard, M. Chatenet, P. Soudant, C. Cremers, Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: a DEMS and in situ FTIR study. App. Catalysis B: Environmental 181, 672–680 (2016)

    Article  Google Scholar 

  3. R.G.C.S. dos Reis, F. Colmati, Electrochemical alcohol oxidation: a comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles. J. Solid State Electrochemistry 20, 2559–2567 (2016)

    Article  Google Scholar 

  4. S.C. Zignani, V. Baglio, D. Sebastián, T.A. Rocha, E.R. Gonzalez, A.S. Aricò, Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction. J. Electroanal. Chem. 763, 10–17 (2016)

    Article  CAS  Google Scholar 

  5. B. Li, Z. Yan, Q. Xiao, J. Dai, D. Yang, C. Zhang, M. Cai, J. Ma, Highly active carbon-supported Pt nanoparticles modified and dealloyed with Co for the oxygen reduction reaction. J. Power Sources 270, 201–207 (2014)

    Article  CAS  Google Scholar 

  6. Y.-H. Chung, D.Y. Chung, N. Jung, H.-Y. Park, Y.-E. Sung, S.J. Yoo, Effect of surface composition of Pt–Fe nanoparticles for oxygen reduction reactions. Int. J. Hydrog. Energy 39, 14751–14759 (2014)

    Article  CAS  Google Scholar 

  7. B.-W. Zhang, Y.-X. Jiang, J. Ren, X.-M. Qu, G.-L. Xu, S.-G. Sun, PtBi intermetallic and PtBi intermetallic with the Bi-rich surface supported on porous graphitic carbon towards HCOOH electro-oxidation. Electrochim. Acta 162, 254–262 (2015)

    Article  CAS  Google Scholar 

  8. G. Cabello, R.A. Davoglio, F.W. Hartl, J.F. Marco, E.C. Pereira, S.R. Biaggio, H. Varela, A. Cuesta, Microwave-assisted synthesis of Pt-Au nanoparticles with enhanced electrocatalytic activity for the oxidation of formic acid. Electrochim. Acta 224, 56–63 (2017)

    Article  CAS  Google Scholar 

  9. A.K. Shukla, A.S. Arico, K.M. El-Khatib, H. Kim, P.L. Antonucci, V. Antonucci, An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons. Appl Surface Science 137, 20–29 (1999)

    Article  CAS  Google Scholar 

  10. Z. Liu, G.S. Jackson, B.W. Eichhorn, PtSn intermetalic, core-shell and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angewandte Chemie (Int. ed.) 49, 3173–3176 (2010)

    Article  CAS  Google Scholar 

  11. M. Arenz, V. Stamenkovic, B.B. Blizanac, K.J. Mayrhofer, N.M. Markovic, P.N. Ross, Carbon-supported Pt-Sn electrocatalysts for the anodic oxidation of H2, CO and H2/CO mixtures. Part II : the structure-activity relationship. J. Catalysis 232, 402–410 (2005)

    Article  CAS  Google Scholar 

  12. B.E. Hayden, M.E. Rendall, O. South, Electro-oxidation of carbon monoxide on well-ordered Pt(111)/Sn surface alloys. J. Am. Chem. Soc. 125, 7738–7742 (2003)

    Article  CAS  Google Scholar 

  13. T. Matsui, K. Fujiwara, T. Okanishi, R. Kikuchi, T. Takeguchi, K. Eguchi, Electrochemical oxidation of CO over tin oxide supported platinum catalyst. J. Power Sources 155, 152–156 (2006)

    Article  CAS  Google Scholar 

  14. W.-Z. Hung, W.-H. Chung, D.-S. Tsai, D.P. Wilkinson, Y.-S. Huang, CO tolerance and catalytic activity of Pt/Sn/SnO2 nanowires loaded on a carbon paper. Electrochim. Acta 55, 2116–2122 (2010)

    Article  CAS  Google Scholar 

  15. M.E. Gallager, C.A. Lucas, V. Stamenkovic, N.M. Markovic, P.N. Ross, Surface structure and relaxation at the Pt3Sn(111)/electrolyte interface. Surf. Sci. 544, L729–L734 (2003)

    Article  Google Scholar 

  16. E. Lee, A. Murthy, A. Manthiram, Comparison of the stabilities and activities of Pt-Ru/C and Pt3-Sn/C electrocatalysts synthesized by polyol method for methanol electro-oxidation reaction. J. Electroanal. Chem. 659, 168–175 (2011)

    Article  CAS  Google Scholar 

  17. Z. Liu, B. Guo, L. Hong, T.H. Lim, Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochem. Commun. 8, 83–90 (2006)

    Article  CAS  Google Scholar 

  18. Z. Liu, L. Hong, S.W. Tay, Preparation and characterization of carbon-supported Pt, PtSnO2 and PtRu nanoparticles for direct methanol fuel cells. Mater. Chem. Phys. 105, 222–228 (2007)

    Article  CAS  Google Scholar 

  19. S. Stevanović, D. Tripković, V. Tripković, D. Minić, A. Gavrilović, A. Tripković, V.M. Jovanović, Insight into the effect of Sn on CO and formic acid oxidation at PtSn catalysts. J. Phys. Chem. C 118, 278–289 (2014)

    Article  Google Scholar 

  20. AXS, TOPAS V3. General profile and structure analysis software for powder diffraction data, Karlsruhe, (2005)

  21. Q. Xu, T. He, D.O. Wipf, In situ electrochemical STM study of the coarsening of platinum islands at double-layer potentials. Langmuir 23, 9098 (2007)

    Article  CAS  Google Scholar 

  22. Q. Xu, E. Kreidler, D.O. Wipf, T. He, In situ electrochemical STM study of potential-induced coarsening and corrosion of platinum nanocrystals. J. Electrochem. Soc. 155, B228 (2008)

    Article  CAS  Google Scholar 

  23. Y. Sugawara, A.P. Yadav, A. Nishikata, T. Tsuru, Dissolution and surface area loss of platinum nanoparticles under potential cycling. J. Electroanal. Chem. 662, 379 (2011)

    Article  CAS  Google Scholar 

  24. K. Hartl, M. Nesselberger, K.J.J. Mayrhofer, S. Kunz, F.F. Schweinberger, G.H. Kwon, M. Hanzlik, U. Heiz, M. Arenz, Electrochemically induced nanocluster migration. Electrochim. Acta 56, 810 (2010)

    Article  CAS  Google Scholar 

  25. L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. American Chem. Soc 132(2), 596 (2010)

    Article  CAS  Google Scholar 

  26. F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7, 385–393 (2005)

    Article  CAS  Google Scholar 

  27. A. Lopez-Cudero, J. Solla-Gullon, E. Herrero, A. Aldaz, J.M. Feliu, CO electrooxidation on carbon supported platinum nanparticles: effect of agglomeration. J. Electroanal. Chem. 644, 117–126 (2010)

    Article  CAS  Google Scholar 

  28. K.J.J. Mayrhofer, J.C. Meier, S.J. Ashton, G.K.H. Wiberg, F. Kraus, M. Hanzlik, M. Arenz, Fuel cell catalyst degradation on the nanoscale. Electrochem. Commun. 10, 1144–1147 (2008)

    Article  CAS  Google Scholar 

  29. T.E. Shubina, M.T.M. Koper, Quantum-chemical calculations of CO and OH interacting with bimetalic surfaces. Electrochim. Acta 47, 3621 (2002)

    Article  CAS  Google Scholar 

  30. V. Radmilovic, T.J. Richardson, S.J. Chen, P.N. Ross Jr., Carbon-supported Pt-Sn electrocatalysts for the anodic oxidation of H2, CO and H2/CO mixtures. Part I. Microstructural characterization. J. Catalysis 232, 199–209 (2005)

    Article  CAS  Google Scholar 

  31. Y. Lin, S. Zhang, S. Yan, G. Liu, The effect of Sn content in Pt-SnO2/CNTs for methanol electro-oxidation. Electrochim. Acta 66, 1–6 (2012)

    Article  CAS  Google Scholar 

  32. M.D. Macia, E. Herrero, J.M. Feliu, Formic acid oxidation on BiPt(1 1 1) electrode in perchloric acid media. A kinetic study. J. Electroanal. Chem. 554-555, 25–34 (2003)

    Article  CAS  Google Scholar 

  33. A. Miki, S. Ye, M. Osawa, Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun., 1500 (2002)

  34. A. Cuesta, M. Escudero, B. Lanova, H. Baltruschat, Cyclic voltammetry, FTIRS, and DEMS study of the electrooxidation of carbon monoxide, formic acid, and methanol on cyanide-modified Pt(111) electrodes. Langmuir 25, 6500 (2009)

    Article  CAS  Google Scholar 

  35. A. Kelaidopoulou, E. Abelidou, G. Kokkinidis, Electrocatalytic oxidation of methanol and formic acid on dispersed electrodes: Pt, Pt-Sn and Pt/M9upd in poly(2-hydeoxy-3-aminophenazine). J. Applied Electrochem. 29, 1255–1261 (1999)

    Article  CAS  Google Scholar 

  36. L. Zheng, L. Xiong, Q. Liu, K. Han, W. Liu, Y. Li, K. Tao, L. Niu, S. Yang, J. Xia, Enhanced electrocatalytic activity for the oxidation of liquid fuels on PtSn nanoparticles. Electrochim. Acta 56, 9860–9867 (2011)

    Article  CAS  Google Scholar 

  37. X.H. Xia, New insights into the influence of upd Sn on the oxidation of formic acid on platinum in acidic solution. Electrochim. Acta 45, 1057–1066 (1999)

    Article  CAS  Google Scholar 

Download references

Funding Information

This work was financially supported by the Ministry of Education and Science, Republic of Serbia, Contract No. H-172060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tripković.

Electronic supplementary material

Fig. S1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripković, D., Stevanović, S., Gavrilović, A. et al. The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts. Electrocatalysis 9, 76–85 (2018). https://doi.org/10.1007/s12678-017-0424-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0424-4

Keywords

Navigation