Skip to main content
Log in

Temperature Effects on the Behavior of Lithium Iron Phosphate Electrodes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The systematic study of the effect of temperature (in the range from −45 to +60°C) on the process of lithium extraction from LiFePO4 and its insertion into FePO4 is carried out. At a current of about C/1.5, with decreasing temperature, the capacity decreases, the polarization increases, the range of compositions corresponding to nonequilibrium solid solutions widens, and the slope of the linear section of the galvanostatic curves corresponding to the two-phase system increases. The decrease in the capacity with decreasing temperature is not described by the simple Arrhenius equation. It is assumed that the process on the lithium iron phosphate electrodes has a mixed diffusion-activation nature. The polarization of the anodic and cathodic processes increases with decreasing temperature in a complicated way, and the polarization of the anodic process exceeds that of the cathodic process appreciably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan, L.-X., Wang, Z.-H., Zhang, W.-X., Hu, X.-L., Chen, J.-T., Huang, Y.-H., and Goodenough, J.B., Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energy Environ. Sci., 2011, vol. 4, p. 269.

    Article  CAS  Google Scholar 

  2. Wang, Y., He, P., and Zhou, H., Olivine LiFePO4: development and future, Energy Environ. Sci., 2011, vol. 4, p. 805.

    Article  CAS  Google Scholar 

  3. Wang, J. and Sun, X., Olivine LiFePO4: the remaining challenges for future energy storage, Energy Environ. Sci., 2015, vol. 8, p. 1110.

  4. Gong, C., Xue, Z., Wen, S., Ye, Y., and Xie, X., Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries, J. Power Sources, 2016, vol. 318, p. 93.

    Article  CAS  Google Scholar 

  5. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. Power Sources, 2017, vol. 343, p. 395.

    Article  CAS  Google Scholar 

  6. Ma, Z., Shao, G., Wang, X., Song, J., and Wang, G., Li3V2(PO4)3 modified LiFePO4/C cathode materials with improved high-rate and low-temperature properties, Ionics, 2013, vol. 19, no. 12, p. 1861.

    Article  CAS  Google Scholar 

  7. Chen, L., Lu, C., Chen, Q., Gu, Y., Wang, M., and Chen, Y., Preparation and characterization of nano-LiFePO4/C using two-fluid spray dryer, Appl. Mech. Mater., 2014, vol. 563, p. 62.

    Article  CAS  Google Scholar 

  8. Zhao, N., Li, Y., Zhao, X., Zhi, X., and Liang, G., Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material, J. Alloys Comp., 2016, vol. 683, p. 123.

    Article  CAS  Google Scholar 

  9. Liu, H., Liu, Y., An, L., Zhao, X., Wang, L., and Liang, G., High energy density LiFePO4/C cathode material synthesized by wet ball milling combined with spray drying method, J. Electrochem. Soc., 2017, vol. 164, no. 14, p. A3666.

    Article  CAS  Google Scholar 

  10. Zhi, X., Liang, G., Ou, X., Zhang, S., and Wang, L., Synthesis and electrochemical performance of LiFe-PO4/C composite by improved solid-state method using a complex carbon source, J. Electrochem. Soc., 2017, vol. 164, no. 6, p. A1285.

    Article  CAS  Google Scholar 

  11. Li, S., Liu, X., Liu, G., Wan, Y., and Liu, H., Highly enhanced low-temperature performances of LiFe-PO4/C cathode materials prepared by polyol route for lithium-ion batteries, Ionics, 2017, vol. 23, no. 1, p. 19.

    Article  CAS  Google Scholar 

  12. Wang, G., Kang, H., Chen, M., Yan, K., Hu, X., and Cairns, E.J., Effects of Solvents on the Electrochemical Performance of LiFePO4/C Composite Electrodes, ChemElectroChem., 2017, vol. 4, no. 2, p. 376.

    Article  CAS  Google Scholar 

  13. Xie, D., Cai, G., Liu, Z., Guo, R., Sun, D., Zhang, C., Wan, Y., Peng, J., and Jiang, H., The low temperature electrochemical performances of LiFePO4/C/graphene nanofiber with 3D-bridge network structure, Electrochim. Acta, 2016, vol. 217, p. 62.

    Article  CAS  Google Scholar 

  14. Zheng, F., Yang, C., Ji, X., Hu, D., Chen, Y., and Liu, M. Surfactants assisted synthesis and electrochemical properties of nano-LiFePO4/C cathode materials for low temperature applications, J. Power Sources, 2015, vol. 288, p. 337.

    Article  CAS  Google Scholar 

  15. Cai, G., Guo, R., Liu, L., Yang, Y., Zhang, C., Wu, C., Guo, W., and Jiang, H., Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2, J. Power Sources, 2015, vol. 288, p. 136.

    Article  CAS  Google Scholar 

  16. Wang, H.-Q., Zhang, X.-H., Zheng, F.-H., Huang, Y.-G., and Li, Q.-Y., Surfactant effect on synthesis of core-shell LiFePO4/C cathode materials for lithium-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 187.

    Article  CAS  Google Scholar 

  17. Ma, Z., Shao, G., Qin, X., Fan, Y., Wang, G., Song, J., and Liu, T., Ionic conductor cerous phosphate and carbon hybrid coating LiFePO4 with improved electrochemical properties for lithium ion batteries, J. Power Source, 2014, vol. 269, p. 194.

    Article  CAS  Google Scholar 

  18. Liao, L., Cheng, X., Ma, Y., Zuo, P., Fang, W., Yin, G., and Gao, Y., Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode, Electrochim. Acta, 2013, vol. 87, p. 466.

    Article  CAS  Google Scholar 

  19. Gong, C., Xue, Z., Wang, X., Zhou, X.-P., Xi, X.-L., and Mai, Y.-W., Poly(ethylene glycol) grafted multi-walled carbon nanotubes/LiFePO4 composite cathodes for lithium ion batteries, J. Power Sources, 2014, vol. 246, p. 260.

    Article  CAS  Google Scholar 

  20. Yang, X., Xu, Y., Zhang, H., Huang, Y., Jiang, Q., and Zhao, C., Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, Electrochim. Acta, 2013, vol. 114, p. 259.

    Article  CAS  Google Scholar 

  21. Xiao, Z., Zhang, Y., and Hu, G., An investigation into LiFePO4/C electrode by medium scan rate cyclic voltammetry, J. Appl. Electrochem. 2014, vol. 45, p. 225.

    Article  CAS  Google Scholar 

  22. Yang, C.-C., Jang, J.-H., and Jiang, J.-R., Comparison electrochemical performances of spherical LiFePO4/C cathode materials at low and high temperatures. Energy Procedia. 2014, vol. 61, p. 1402.

    Article  CAS  Google Scholar 

  23. Yang, C.-C., Jang, J.-H., and Jiang, J.-R., Study of electrochemical performances of lithium titanium oxide-coated LiFePO4/C cathode composite at low and high temperatures, Appl. Energy, 2016, vol. 162, p. 1419.

    Article  CAS  Google Scholar 

  24. Wu, G., Liu, N., Gao, X., Tian, X., Zhu, Y., Zhou, Y., and Zhu, Q., A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life, Appl. Surface Science, 2018, vol. 435, p. 1329.

    Article  CAS  Google Scholar 

  25. Oh, S.W., Myung, S.-T., Oh, S.-M., Oh, K.H., Amine, K., Scrosati, B., and Sun, Y.-K. Double Carbon Coating of LiFePO4 as High Rate Electrode for Rechargeable Lithium Batteries, Advanced Mater., 2010, vol. 22, p. 4842.

    Article  CAS  Google Scholar 

  26. Xie, H.-M., Wang, R.-S., Ying, J.-R., Zhang, L.-Y., Jalbout, A.F., Yu, H.-Y., Yang, G.-L., Pan, X.-M., and Su, Z.-M., Optimized LiFePO4—Polyacene Cathode Material for Lithium-Ion Batteries, Advanced Mater., 2006, vol. 18, p. 2609.

    Article  CAS  Google Scholar 

  27. Hsieh, C.-T., Pai, C.-T., Chen, Y.-F., Yu, P.-Y., and Juang, R.-S., Electrochemical performance of lithium iron phosphate cathodes at various temperatures, Electrochim. Acta, 2014, vol. 115, p. 96.

    Article  CAS  Google Scholar 

  28. Lewandowski, A., Kurc, B., Swiderska-Mocek, A., and Kusa, N., GraphitejLiFePO4 lithium-ion battery working at the heat engine coolant temperature, J. Power Sources, 2014, vol. 266, p. 132.

    Article  CAS  Google Scholar 

  29. Wongittharom, N., Wang, C.-H., Wang, Y.-C., Fey, G.T.-K., Li, H.-Y., Wu, T.-Y., Lee, T.-C., and Chang, J.-K., Charge-storage performance of Li/LiFePO4 cells with additive incorporated ionic liquid electrolytes at various temperatures, J. Power Sources, 2014, vol. 260, p. 268.

    Article  CAS  Google Scholar 

  30. Huang, Y., Xu, Y., and Yang, X., Enhanced electrochemical performances of LiFePO4/C by co-doping with magnesium and fluorine, Electrochim. Acta, 2013, vol. 113, p. 156.

    Article  CAS  Google Scholar 

  31. Chen, M.-S., Wu, S.-h., Pang, and W.K., Effects of vanadium substitution on the cycling performance of olivine cathode materials, J. Power Sources, 2013, vol. 241, p. 690.

    Article  CAS  Google Scholar 

  32. Kurita, T., Lu, J., Yaegashi, M., Yamada, Y., Nishimura, S.-i., Tanaka, T., Uzumaki, T., and Yamada, A., Challenges toward higher temperature operation of LiFePO4, J. Power Sources, 2012, vol. 214, p. 166.

    Article  CAS  Google Scholar 

  33. Zhang, S.S., Xu, K., and Jow, T.R., An improved electrolyte for the LiFePO4 cathode working in a wide temperature range, J. Power Sources. 2006, vol. 159, p. 702.

    Article  CAS  Google Scholar 

  34. Wu, X.-L., Guo, Y.-G., Su, J., Xiong, J.-W., Zhang, Y.-L., and Wan, L.-J., Carbon-Nanotube-Decorated Nano-LiFePO4@C Cathode Material with Superior High-Rate and Low-Temperature Performances for Lithium-Ion Batteries. Advanced Energy Mater., 2013, vol. 3, p. 1155.

    Article  CAS  Google Scholar 

  35. Tusseeva, E.K., Kulova, T.L., and Skundin, A.M., Temperature effect on the lithium titanate electrode behavior, Russ. J. Electrochem., 2018, vol. 54, p. 1186.

    Article  CAS  Google Scholar 

  36. Kulova, T.L., Effect of Temperature on Reversible and Irreversible Processes during Lithium Intercalation in Graphite, Russ. J. Electrochem., 2004. vol. 40, p. 1052.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skundin.

Additional information

Russian Text © E.K. Tusseeva, T.L. Kulova, A.M. Skundin, A.K. Galeeva, A.P. Kurbatov, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 3, pp. 329–334.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tusseeva, E.K., Kulova, T.L., Skundin, A.M. et al. Temperature Effects on the Behavior of Lithium Iron Phosphate Electrodes. Russ J Electrochem 55, 194–199 (2019). https://doi.org/10.1134/S1023193519020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519020149

Keywords

Navigation