Skip to main content
Log in

Temperature Effect on the Behavior of a Lithium Titanate Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of temperature (over the–15 to +60°С range) on the insertion of lithium into Li4Ti5O12 is systematically studied. At a current of ~1.2 С, as the temperature decreased the capacity decreased, polarization increased, the range of compositions corresponding to nonequilibrium solid solutions widened, and the slope of the galvanostatic curves’ linear segment corresponding to the Li4 + δTi5O12–Li7–δTi5O12 twophase system increased. The decrease in capacity with decreasing temperature can be explained by the fact that, up to the moment of the abrupt change in the potential, at moderate current values, the diffusion layer’s thickness drops to a value smaller than the material particles’ size. In this case, the capacity’s temperature dependence corresponds to that of lithium’s solid-state diffusion. The latter is described by the Arrhenius equation with the activation energy of ~35 kJ/mol in the temperature range from–15 to +18°С; at higher temperatures the capacity is practically temperature-independent. The polarization of the anodic and cathodic processes is practically identical; it decreases linearly as the temperature increases with a proportionality coefficient of ~2.5 mV/K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colbow, K.M., Dahn, J.R., and Haering, R.R., Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4, J. Power Sources, 1989. vol. 26, p. 397.

  2. Zaghib, K., Armand, M., and Gauthier, M., Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries, J. Electrochem. Soc., 1998. Vol, 145, p. 3135.

    Google Scholar 

  3. Ferg, E., Gummow, R.J., de Kock, A., and Thackeray, M.M., Spinel Anodes for Lithium-Ion Batteries. J. Electrochem. Soc., 1994, vol. 141, p. L147.

    Google Scholar 

  4. Ohzuku, T., Ueda, A., and Yamamota, N., Zero-Strain Insertion Material of Li[LiTi5/3]O4 for Rechargeable Lithium Cells, J. Electrochem. Soc., 1995, vol. 142, p. 1431.

    Article  CAS  Google Scholar 

  5. Allen, J.L., Jow, T.R., and Wolfenstine, J., Low temperature performance of nanophase Li4Ti5O12, J. Power Sources, 2006, vol. 159, p. 1340.

    Article  CAS  Google Scholar 

  6. Tao Yuan, Xing Yu, Rui Cai, Yingke Zhou, and Zongping Shao, Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance, J. Power Sources, 2010, vol. 195, p. 4997.

    Article  CAS  Google Scholar 

  7. Takami, N., Hoshina, K., and Inagaki, H., Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction, J. Electrochem. Soc., 2011, vol. 158, p. A725.

    Google Scholar 

  8. Pohjalainen, E., Räsänen, S., Jokinen, M., Yliniemi, K., Worsley, D.A., Kuusivaara, Ju., Juurikivi, J., Ekqvist, R., Kallio, T., and Karppinen, M., Water soluble binder for fabrication of Li4Ti5O12 electrodes, J. Power Sources, 2013, vol. 226, p. 134.

    Article  CAS  Google Scholar 

  9. Guo, X., Xiang, H.F., Zhou, T.P., Li, W.H., Wang, X.W., Zhou, J.X., and Yu, Y., Solid-state synthesis and electrochemical performance of Li4Ti5O12/graphene composite for lithium-ion batteries, Electrochim. Acta, 2013, vol. 109, p. 33.

    Article  CAS  Google Scholar 

  10. Marinaro, M., Nobili, F., Birrozzi, A., Eswara Moorthy, S.K., Kaiser, U., Tossici, R., and Marassi, R., Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries, Electrochim. Acta, 2013, vol. 109, p. 207.

    CAS  Google Scholar 

  11. Nakahara, K., Nakajima, R., Matsushima, T., and Majima, H., Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells, J. Power Sources, 2003, vol. 117, p. 131.

    Article  CAS  Google Scholar 

  12. Mandi Ji, Yunlong Xu, Zhen Zhao, Huang Zhang, Dong Liu, Chongjun Zhao, Xiuzhen Qian, and Chunhua Zhao, Preparation and electrochemical performance of La3+ and F–co-doped Li4Ti5O12 anode material for lithium-ion batteries, J. Power Sources, 2014, vol. 263, p. 296.

    Article  CAS  Google Scholar 

  13. Pohjalainen, E., Kallioinen, J., and Kallio T., Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes, J. Power Sources, 2015, vol. 279, p. 481.

    Article  CAS  Google Scholar 

  14. Su-Il Pyun, Sung-Woo Kim, and Heon-Cheol Shin, Lithium transport through Li1 + δ[Ti2–yLiy]O4 (y = 0; 1/3) electrodes by analysing current transients upon large potential steps, J. Power Sources, 1999, vol. 81–82, p. 248.

    Google Scholar 

  15. Yaroslavtsev, A.B., Kulova, T.L., and Skundin A.M., Electrode nanomaterials for lithium ion batteries, Russ. Chem. Revs., 2015, vol. 84, p. 826.

    Article  CAS  Google Scholar 

  16. Jian Gao, Changyin Jiang, Jierong Ying, Chunrong and Wan, Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries, J. Power Sources, 2006, vol. 155, p. 364.

    Article  CAS  Google Scholar 

  17. Kim, J. and Cho, J., Spinel Li4Ti5O12 Nanowires for High-Rate Li-Ion Intercalation Electrode, Electrochem. Solid-State Lett., 2007, vol. 10, p. A81.

    Google Scholar 

  18. Ge, H., Li, N., Li, D., Dai, C., and Wang, D., Study on the effect of Li doping in spinel Li4 + xTi5–xO12 (0 < x < 0.2) materials for lithium-ion batteries, Electrochem. Comm., 2008, vol. 10, p. 1031.

    Article  CAS  Google Scholar 

  19. Wu, K., Yang, J., Liu, Y., Zhang, Y., Wang, C., Xu, J., Ning, F., and Wang, D., Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature, J. Power Sources, 2013, vol. 237, p. 285.

    Article  CAS  Google Scholar 

  20. Yan-Bing He, Ming Liu, Zhen-Dong Huang, Biao Zhang, Yang Yu, Baohua Li, Feiyu Kang, and Jang-Kyo Kim, Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries, J. Power Sources, 2013, vol. 239, p. 269.

    Google Scholar 

  21. Hsien-Chieh Chiu, Xia Lu, Jigang Zhou, Lin Gu, Reid, J., Gauvin, R., Zaghib, K., and Demopoulos, G.P., Capacity Fade Mechanism of Li4Ti5O12 Nanosheet Anode, Adv. Energy Materials, 2017, vol. 7, no. 5. Article 1601825.

    Google Scholar 

  22. Kulova, T.L., Effect of Temperature on Reversible and Irreversible Processes during Lithium Intercalation in Graphite, Russ. J. Electrochem., 2004, vol. 40, p. 1052.

    Article  CAS  Google Scholar 

  23. Galus, Z. Fundamentals of Electrochemical Analysis. Chichester: Ellis Horwood, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skundin.

Additional information

Original Russian Text © E.K. Tusseeva, T.L. Kulova, A.M. Skundin, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 12, pp. 1135–1143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tusseeva, E.K., Kulova, T.L. & Skundin, A.M. Temperature Effect on the Behavior of a Lithium Titanate Electrode. Russ J Electrochem 54, 1186–1194 (2018). https://doi.org/10.1134/S1023193518140082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518140082

Keywords

Navigation