Skip to main content
Log in

Rotating ring-disk voltammetry: Diagnosis of catalytic activity of metallic copper catalysts toward CO2 electroreduction

  • Section 3. Electron Transfer Kinetics and Electrochemical Processes
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Using the rotating ring (platinum)—disk (glassy carbon) electrode methodology, electrocatalytic activity of the microstructured copper centers (imbedded within the polyvinylpyrrolidone polymer matrix and deposited onto the glassy carbon disk electrode) has been monitored during electroreduction of carbon dioxide both in acid (HClO4) and neutral (KHCO3) media as well as diagnosed (at Pt ring) with respect to formation of the electroactive products. Combination of the stripping-type and rotating ring-disk voltammetric approaches has led to the observation that, regardless the overlapping reduction phenomena, the reduction of carbon dioxide at copper catalyst is, indeed, operative and coexists with hydrogen evolution reaction. Using the fundamental concepts of surface electrochemistry and analytical voltammetry, the reaction products (thrown onto the platinum ring electrode) could be considered and identified as adsorbates (on Pt) under conditions of the stripping-type oxidation experiment. Judging from the potentials at which the stripping voltammetric peaks appear in neutral CO2-saturated KHCO3 (pH 6.8), formic acid or carbon monoxide seem to be the most likely reaction products or intermediates. The proposed methodology also permits correlation between the CO2 electroreduction products and the potentials applied to the disk electrode. By performing the comparative stripping-type voltammetric experiments in acid medium (HClO4 at pH 1) with the adsorbates of formic acid, ethanol and acetaldehyde (on Pt ring), it can be rationalized that, although C2H5OH or CH3CHO are very likely CO2-reduction electroactive products, formation of some HCOOH, CH3OH or even CO cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubois, D.L., in Encyclopedia of Electrochemistry, Bard, A.J. and Stratmann, M., Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, p. 202.

  2. Frese, J.K.W., in Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, Sullivan, B.P., Krist, K., and Guard, H.E., Eds., Amsterdam: Elsevier, 1993, p. 145.

  3. Halmann, M.M. and Steinberg, M., in Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, Halmann, M.M. and Steinberg, M., Eds., Boca Raton, FL: Lewis Publishers, 1999, p. 411.

  4. Hori, Y., in Modern Aspects of Electrochemistry, Vayenas, C.G., White, R.E., and Gamboa-Aldeco, M.E., Eds., New York: Springer, 2008, vol. 42, p. 89.

    Article  CAS  Google Scholar 

  5. Taniguchi, I., in Modern Aspects of Electrochemistry, Bockris, J.M., Conway, B.E., and White, R.E., New York: Springer, 1989, vol. 20, p. 327.

    CAS  Google Scholar 

  6. Bian, Z.-Y., Sumi, K., Furue, M., Sato, S., Koike, K., and Ishitani, O., A novel tripodal ligand, tris[(4'-methyl-2,2'-bipyridyl-4-yl)-methyl]carbinol and its trinuclear RuII/ReI mixed–metal complexes: Synthesis, emission properties, and photocatalytic CO2 reduction, Inorg. Chem., 2008, vol. 47, p. 10801.

    Article  CAS  Google Scholar 

  7. Tanaka, K. and Ooyama, D., Multi-electron reduction of CO2 via Ru–CO2,–C(O)OH,–CO,–CHO, and ?CH2OH species, Coord. Chem. Rev., 2002. vol. 226. p. 211.

    Article  CAS  Google Scholar 

  8. Toyohara, K., Nagao, H., Mizukawa, T., and Tanaka, K., Ruthenium formyl complexes as the branch point in two-and multi-electron reductions of CO2, Inorg. Chem., 1995, vol. 34, p. 5399.

    Article  CAS  Google Scholar 

  9. Hori, Y., Murata, A., and Takahashi, R., Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, J. Chem. Soc., Faraday Trans. 1, 1989, vol. 85, p. 2309.

    Article  CAS  Google Scholar 

  10. Hoshi, N., Sato, E., and Hori, Y., Electrochemical reduction of carbon dioxide on kinked stepped surfaces of platinum inside the stereographic triangle, J. Electroanal. Chem., 2003, vol. 540, p. 105.

    Article  CAS  Google Scholar 

  11. Peterson, A.A., Abild-Pedersen, F., Studt, F., Prossmeisl, J., and Nørskov, J.K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energy Environ. Sci., 2010, vol. 3, p. 1311.

    Article  CAS  Google Scholar 

  12. Finn, C., Schnittger, S., Yellowlees, L.J., and Love, J.B., Molecular approaches to the electrochemical reduction of carbon dioxide, Chem. Commun., 2012, vol. 48, p. 1392.

    Article  CAS  Google Scholar 

  13. Stalder, C.J., Chao, S., Summers, D.P., and Wrinhton, M.S., Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen, J. Am. Chem. Soc., 1983, vol. 105, p. 6318.

    Article  CAS  Google Scholar 

  14. Dall’Antonina, L.H., Tremiliosi-Filho, G., and Jerkiewicz, G., Influence of temperature on the growth of surface oxides on palladium electrodes, J. Electroanal. Chem., 2001, vol. 502, p. 72.

    Article  Google Scholar 

  15. Kibler, L.A., El-Aziz, A.M., Hoyer, R., and Kolb, D.M., Tuning reaction rates by lateral strain in a palladium monolayer, Angew. Chem. Int. Ed., 2005, vol. 44, p. 2080.

    Article  CAS  Google Scholar 

  16. Grden, M., Lukaszewski, M., Jerkiewicz, G., and Czerwinski, A., Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption, Electrochim. Acta, 2008, vol. 53, p. 7585.

    Article  Google Scholar 

  17. Chen, Y. and Kanan, M.W., Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts, J. Am. Chem. Soc., 2012, vol. 134, p. 1986.

    Article  CAS  Google Scholar 

  18. Gattrell, M., Gupta, N., and Co, A., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper, J. Electroanal. Chem., 2006, vol. 594, p. 1.

    Article  CAS  Google Scholar 

  19. Dewulf, D.W., Jin, T., and Bard, A.J., Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions, J. Electrochem. Soc., 1989, vol. 136, p. 1686.

    Article  CAS  Google Scholar 

  20. Schouten, K.J.P., Kwon, Y., Van der Ham, C.J.M., Qin, Z., and Koper, M.T.M., A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes, Chem. Sci., 2011, vol. 2, p. 1902.

    Article  CAS  Google Scholar 

  21. Peterson, A.A., Abild-Pedersen, F., Studt, F., Rossmeisl, J., and Nørskov, J.K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energy Environ. Sci., 2010, vol. 3, p. 1311.

    Article  CAS  Google Scholar 

  22. Durand, W.J., Peterson, A.A., Studt, F., Abild-Pedersen, F., and Nørskov, J.K., Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces, Surf. Sci., 2011, vol. 605, p. 1354.

    Article  CAS  Google Scholar 

  23. Li, Ch.W. and Kanan, M.W., CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc., 2012, vol. 134, pp. 7231–7234.

    Article  CAS  Google Scholar 

  24. Baturina, O.A. Lu, Q., Padila, M.A., Xin, L., Li, W., Serov, A., Artyushkova, K., Atanassov, P., Xu, F., Epshteyn, A., Brintlinger, T., Schuette, M., and Collins, G.E., CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles, ACS Catal., 2014, vol. 4, pp. 3682–3695.

    Article  CAS  Google Scholar 

  25. Hori, Y., Takahashi, I., Koga, O., and Hoshi, N., Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes, J. Phys. Chem. B, 2002, vol. 106, pp. 15–17.

    Article  CAS  Google Scholar 

  26. Hori, Y., Takahashi, I., Koga, O., and Hoshi, N., Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes, J. Mol. Catal. A: Chem., 2003, vol. 199, pp. 39–47.

    Article  CAS  Google Scholar 

  27. Tang, W., Peterson, A.A., Varela, A.S., Jovanov, Z.P., Bech, L., Durand, W.J., Dahl, S., Norskov, J.K., and Chorkendorff, I., The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction, Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 76–81.

    Article  CAS  Google Scholar 

  28. Goncalves, M.R., Gomes, A., Condeco, J., Fernandes, T.R.C., Pardal, T., Sequeira, C.A.C., and Branco, J.B., Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits, Electrochim. Acta, 2013, vol. 102, pp. 388–392.

    Article  CAS  Google Scholar 

  29. Frese, K.W., Jr., Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, Sullivan, B.P., Krist, K., and Guard, H.E., Eds., Amsterdam, NY: Elsevier, 1993. p. 145–216.

  30. Shibata, H., Moulijn, J.A., and Mul, G., Enabling electrocatalytic Fischer–Tropsch synthesis from carbon dioxide over copper-based electrodes, Catal. Lett., 2008, vol. 123, pp. 186–192.

    Article  CAS  Google Scholar 

  31. Momose, Y., Sato, K., and Ohno, O., Electrochemical reduction of CO2 at copper electrodes and its relationship to the metal surface characteristics, Surf. Interface Anal., 2002, vol. 34, pp. 615–618.

    Article  CAS  Google Scholar 

  32. Zhu, D.D., Liu, J.L., and Qiao, S.Z., Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide, Adv. Mater., 2016, vol. 28, pp. 3423–3452.

    Article  CAS  Google Scholar 

  33. Brito, J.F., Araujo, A.R., Rajeshwar, K., and Zanoni, M.V.B., Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects, Chem. Eng. J., 2015, vol. 264, pp. 302–309.

    Article  Google Scholar 

  34. Brito, J.F., Silva, A.A., Cavalheiro, A.J., and Zanoni, M.V.B., Evaluation of the parameters affecting the photoelectrocatalytic reduction of CO2 to CH3OH at Cu/Cu2O electrode, Int. J. Electrochem. Sci., 2014, vol. 9, pp. 5961–5973.

    Google Scholar 

  35. Ghadimkhani, G., de Tacconi, N.R., Chanmanee, W., Janaky, C., and Rajeshwar, K., Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays, Chem. Commun., 2013, vol. 49, pp. 1297–1299.

    Article  CAS  Google Scholar 

  36. Li, P., Xu, J., Jing, H., Wu, C., Peng, H., and Lu, J., Wedged N-doped CuO with more negative conductive band and lower overpotential for high efficiency photoelectric converting CO2 to methanol, Appl. Catal. B: Environ., 2014, vol. 156–157, pp. 134–140.

    Article  Google Scholar 

  37. Kecsenovity, E., Endrödi, B., Pápa, Zs., Hernádi, K., Rajeshwar, K., and Janáky, C., Decoration of ultralong carbon nanotubes with Cu2O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO2 reduction, J. Mater. Chem. A, 2016, vol. 4, pp. 3139–3147.

    Article  CAS  Google Scholar 

  38. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: VCH, 1994.

    Google Scholar 

  39. Galus, Z., Fundamentals of Electrochemical Analysis, 2nd ed., New York: Horwood, 1994.

    Google Scholar 

  40. Albery, W.J. and Hitchman, M.L., Ring-Disc Electrodes, Oxford: Clarendon, 1971, Chapter4.

    Google Scholar 

  41. Frumkin, A.N. and Nekrasov, L.N., On ring disk electrode, Dokl. Akad. Nauk SSSR, 1959, vol. 126, p. 115.

    Google Scholar 

  42. Ivanov, Yu.B. and Levich, V.G., Study of unstable intermediates of electrode reactions by means of rotating disk electrode. Dokl. Akad. Nauk SSSR, 1959, vol. 126, p. 1029.

    CAS  Google Scholar 

  43. Frumkin, A.N., Nekrasov, L.N., Levich, W.G., and Ivanov, Yu.B., Die anwendung der rotierenden scheibenelektrode mit einem ringe zur untersuchung von zwischenprodukten elektrochemischer reaktionen, J. Electroanal. Chem., 1959–1960, vol. 1, p. 84.

    Google Scholar 

  44. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice-Hall, 1962.

    Google Scholar 

  45. Zhang, J., Pietro, W.J., and Lever, A.B.P., Rotating ring-disk electrode analysis of CO2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on a platinum ring, J. Electroanal. Chem., 1996, vol. 403, pp. 93–100.

    Article  Google Scholar 

  46. Lates, V., Falch, A., Jordaan, A., Peach, R., and Kriek, R.J., An electrochemical study of carbon dioxide electroreduction on gold-based nanoparticle catalysts, Electrochim. Acta, 2014, vol. 128, pp. 75–84.

    Article  CAS  Google Scholar 

  47. Wadas, A., Rutkowska, I.A., Gorczynski, A., Kubicki, M., Patroniak, V., and Kulesza, P.J., Fabrication of nanostructured palladium within tridentate Schiffb-baseligand coordination architecture: Enhancement of electrocatalytic activity toward CO2 electroreduction, Electrocatalysis, 2014, vol. 5, pp. 229–234.

    Article  CAS  Google Scholar 

  48. Ziaei-Azad, H. and Semagina, N., Bimetallic catalysts: Requirements for stabilizing PVP removal depend on the surface composition, Appl. Catal. A, 2014, vol. 482, p. 237.

    Article  Google Scholar 

  49. Kyrychenko, A., Korsun, O.M., Gabin, I.I., Kovalenko, S.M., and Kalugin, O.N., Atomistic simulations of coating of silver nanoparticles with poly (vinylpyrrolidone) oligomers: Effect of oligomer chain length, J. Phys. Chem. C, 2015, vol. 119, p. 7888.

    Article  CAS  Google Scholar 

  50. Lan, Y., Ma, S., Lu, J., and Kenis, P.J.A., Investigation of a Cu (core)/CuO (shell) catalyst for electrochemical reduction of CO2 in aqueous solution, Int. J. Electrochem. Sci., 2014, vol. 9, pp. 7300–7308.

    CAS  Google Scholar 

  51. Malik, M.I., Malaibari, Z.O., Atieh, M., and Abussaud, B., Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O, Chem. Eng. Sci., 2016, vol. 152, pp. 468–477.

    Article  Google Scholar 

  52. Rutkowska, I.A., Wadas, A., and Kulesza, P.J., Enhancement of oxidative electrocatalytic properties of platinum nanoparticles by supporting onto mixed WO3/ZrO2 matrix, Appl. Surf. Sci., 2016, vol. 388, pp. 616–623.

    Article  CAS  Google Scholar 

  53. Rutkowska, I.A., Koster, M.D., Blanchard, G.J., and Kulesza, P.J., J. Power Sources, 2014, vol. 272, pp. 681–688.

    Article  CAS  Google Scholar 

  54. Rutkowska, I.A., Enhancement of oxidation of formic acid in acid medium on zirconia-supported phosphotungstate-decorated noble metal (Pd, Pt) nanoparticles, Aust. J. Chem., 2016, vol. 69, pp. 394–402.

    Article  CAS  Google Scholar 

  55. Lukaszewski, M., Grden, M., and Czerwinski, A., Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium–platinum–rhodium alloys, Electrochim. Acta, 2004, vol. 49, pp. 3161–3167.

    Article  CAS  Google Scholar 

  56. Siwek, H., Lukaszewski, M., and Czerwinski, A., Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys, Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 3752–3765.

    Article  CAS  Google Scholar 

  57. Camara, G.A. and Iwasita, T., Parallel pathways of ethanol oxidation: The effect of ethanol concentration, J. Electroanal. Chem., 2005, vol. 578, pp. 315–321.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Kulesza.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 10, pp. 1348–1358.

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadas, A., Rutkowska, I.A., Bartel, M. et al. Rotating ring-disk voltammetry: Diagnosis of catalytic activity of metallic copper catalysts toward CO2 electroreduction. Russ J Electrochem 53, 1194–1203 (2017). https://doi.org/10.1134/S1023193517100135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517100135

Keywords

Navigation