Skip to main content
Log in

Estimating parameters from rotating ring disc electrode measurements

  • Section 1. Mass and Charge Transfer
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. In this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst–Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involving three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G., Physicochemical Hydrodynamics, Prentice Hall, 1962, ISBN-13: 978-0136744405.

    Google Scholar 

  2. Compton, R.G., and Banks, C.E., Understanding Voltammetry, Imperial College Press, 2011, ISBN-13 978-1-84816-585-4.

    Book  Google Scholar 

  3. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., 2000, ISBN-13: 978-0471043720.

    Google Scholar 

  4. Gabe, D.R. and Walsh, F.C., J. Appl. Electrochem., 1983, vol. 13, no. 1, pp. 3–21.

    Article  CAS  Google Scholar 

  5. Tarasevich, M.R., Sadkowski, A., and Yeager, E., Kinetics and mechanisms of electrode processes, in Comprehensive Treatise of Electrochemistry, Horsman, P., Conway, B.E., and Yeager, E., Eds., New York: Plenum Press, 1983, vol. 7, p. 354.

    Google Scholar 

  6. Newman, J.S., J. Phys. Chem., 1966, vol. 70, no. 4, pp. 1327–1328.

    Article  CAS  Google Scholar 

  7. White, R.E. and Newman, J.S., J. Electroanal. Chem., 1977, vol. 82, pp. 173–186.

    Article  CAS  Google Scholar 

  8. Tribollet, B. and Newman, J.S., J. Electrochem. Soc., 1983, vol. 130, pp. 2016–2026.

    Article  CAS  Google Scholar 

  9. White, F.M., Viscous Fluid Flow, New York: McGraw-Hill, Inc, 1974.

    Google Scholar 

  10. Smyrl, W.H. and Newman, J.S., J. Electrochem. Soc., 1972, vol. 119, pp. 212–219.

    Article  CAS  Google Scholar 

  11. Newman, J. and Thomas-Alyea, K.E., Electrochemical Systems, 3rd Ed., New Jersey: John Wiley & Sons, Inc., 2004.

    Google Scholar 

  12. White, R.E., Mohr, C.M., Jr., and Newman, J., J. Electrochem. Soc., 1976, vol. 123, p. 383.

    Article  CAS  Google Scholar 

  13. Kármán, T. and Angew, Z., Math. Mech., 1921, vol. 1, p. 486.

    Google Scholar 

  14. Cochran, W.G., Proc. Cambridge Philos. Soc., 1934, vol. 30, p. 365.

    Article  Google Scholar 

  15. Krylov, V.S. and Babak, V.N., Sov. Electrochem., 1971, vol. 7, p. 826.

    Google Scholar 

  16. Nicancioglu, K. and Newman, J.S., J. Electrochem. Soc., 1973, vol. 120, pp. 1356–1358.

    Article  Google Scholar 

  17. Santhanagopalan, S. and White, R.E., J. Electrochem. Soc., 2004, vol. 151, no. 8, pp. J50–J53.

    Article  CAS  Google Scholar 

  18. Deslouis, C., Tribollet, B., Duprat, M., and Moran, F., J. Electrochem. Soc., 1987, vol. 134, p. 2496.

    Article  CAS  Google Scholar 

  19. Orazem, M.E., in Tutorial: Application of Mathematical Models for Interpretation of Impedance Spectra, Savinell, R.F., West, A.C., Renton, J.M., and Weidner, J., Ed., The Electrochemical Society Proceedings Series, NJ: Pennington, 1999, PV 99-14, p. 68.

  20. Verbrugge, M.W., J. Electrochem. Soc., 1992, vol. 139, p. 3529.

    Article  CAS  Google Scholar 

  21. Pleskov, Yu.V. and Filinovskii, V.Yu., The Rotating Disc Electrode, New York: Consultants Bureau, 1976.

    Book  Google Scholar 

  22. Beran, P. and Bruckenstein, S., J. Phys. Chem., 1968, vol. 72, p. 3630.

    Article  CAS  Google Scholar 

  23. White, R.E., Lorimer, S.E., and Darby, R., J. Electrochem. Soc., 1983, vol. 130, no. 5, pp. 1123–1126.

    Article  CAS  Google Scholar 

  24. Pons, S., Electroanalytical Chemistry, vol. 13, Bard, A.J., Ed., New York: Marcel Dekker, Inc., 1984.

  25. Hale, J.M., J. Electroanal. Chem. Interfacial Electrochem., 1964, vol. 8, p. 332.

    CAS  Google Scholar 

  26. Prater, K.B. and Bard, A.J., J. Electrochem. Soc., 1970, vol. 117, p. 207.

    Article  CAS  Google Scholar 

  27. Eddowes, M.J. and Grazel, M., J. Electroanal. Chem. Interfacial Electrochem., 1983, vol. 152, p. 143.

    Article  CAS  Google Scholar 

  28. White, R.E. and Lorimer, S.E., J. Electrochem. Soc., 1983, vol. 130, no. 5, pp. 1096–1103.

    Article  CAS  Google Scholar 

  29. Adanuvor, P.K., White, R.E., Lorimer, S.E., J. Electrochem. Soc., 1987, vol. 134, no. 3, pp. 625–631.

    Article  CAS  Google Scholar 

  30. Adanuvor, P.K. and White, R.E., J. Electrochem. Soc., 1987, vol. 134, pp. 1093–1098.

    Article  CAS  Google Scholar 

  31. Adanuvor, P.K. and White, R.E., J. Electrochem. Soc., 1987, vol. 135, no. 8, pp. 1887–1898.

    Article  Google Scholar 

  32. Wu, S-L., Orazem, M.E., Tribollet, B., and Vivier, V., J. Electroanal. Chem., 2015, vol. 737, pp. 11–22.

    Article  CAS  Google Scholar 

  33. Schmachtel, S. and Kontturi, K., Electrochim. Acta, 2011, vol. 56, no. 19, pp. 6812–6823.

    Article  CAS  Google Scholar 

  34. Mohr, C.M., Jr. and Newman, J., J. Electrochem. Soc., 1975, vol. 122, pp. 928–931.

    Article  CAS  Google Scholar 

  35. Low, C.T.J., Roberts, E.P.L., and Walsh, F.C., Electrochim. Acta, 2007, vol. 52, p. 3833.

    Article  Google Scholar 

  36. Tong, L., Int. J. Surf. Eng. Coatings, 2012, vol. 90, no. 3, pp. 120–124.

    CAS  Google Scholar 

  37. Dong, Q., Santhanagopalan, S., and White, R.E., J. Electrochem. Soc., 2008, vol. 155, no. 9, pp. B963–B968.

    Article  CAS  Google Scholar 

  38. Dong, Q., Santhanagopalan, S., and White, R.E., J. Electrochem. Soc., 2007, vol. 154, no. 8, pp. A816–A825.

    Article  CAS  Google Scholar 

  39. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, 2nd Ed., New York: John Wiley & Sons, Inc., 2002.

    Google Scholar 

  40. Comsol Multiphysics, Version 3.2, Reference Manual, 2005.

  41. Bower, V.E. and Davis, R.S., J. Res. Nat. Bureau Standards, 1980, vol. 85, no. 3, pp. 175–191.

    Article  CAS  Google Scholar 

  42. Albery, W.J. and Bruckenstein, S., Trans. Faraday Soc., 1966, vol. 62, pp. 1920–1924.

    Article  CAS  Google Scholar 

  43. Markovic, N.M., Gasteiger, H.A. and Ross. P.N., Jr., J. Phys. Chem., 1995, vol. 99, pp. 3411–3418.

    Article  CAS  Google Scholar 

  44. Adanuvor, P.K., White, R.E., and Lorimer, S.E., J. Electrochem. Soc., 1987, vol. 134, pp. 1450–1454.

    Article  CAS  Google Scholar 

  45. Henstridge, M., Laborda, E., Rees, N.V., and Compton, R.G., Electrochim. Acta, 2012, vol. 84, pp. 12–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph E. White.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 10, pp. 1225–1238.

This paper is the author’s contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhanagopalan, S., White, R.E. Estimating parameters from rotating ring disc electrode measurements. Russ J Electrochem 53, 1087–1099 (2017). https://doi.org/10.1134/S1023193517100111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517100111

Keywords

Navigation