Skip to main content
Log in

Ion-transfer across a membrane in the presence of a preceding slow homogeneous chemical reaction in the diffusion layer

  • Section 1. Mass and Charge Transfer
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The theory of rotating disk electrode developed by Levich is being advanced further and adapted to electromembrane systems with a slow chemical reaction. In terms of the system of Nernst–Plank equations supplemented by the equation of material balance with the source of ions that appear due to the weak-electrolyte dissociation, an attempt is undertaken to describe theoretically the ion electrodiffusion in the diffusion layer of a membrane system complicated by a limiting homogeneous chemical reaction. It is shown that the kinetics in membrane systems with a preceding slow homogeneous chemical reaction has limiting cases in which the process is controlled by either the chemical reaction or electrodiffusion. Depending on the rate constant of dissociation, a kind of mixed kinetics is observed between these two limiting cases. The approximate equation for estimating the limiting kinetic current is derived. The ion concentration profiles and the reaction rate in the diffusion layer are calculated. The effect of the weak electrolyte concentration, the rate constant of dissociation, and the membrane disk rotation rate on the electrochemical characteristics of the system is studied. The theoretical fundamentals for determination of the rate of slow chemical reaction in electromembrane systems by the method of rotating membrane disk are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G., Zh. Fiz. Khim., 1944, vol. 18, p. 335.

    CAS  Google Scholar 

  2. Levich, V.G., Zh. Fiz. Khim., 1948, vol. 22, p. 575.

    CAS  Google Scholar 

  3. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Fizmatgiz, 1959; Levich, V.G., Physicochemical Hydrodynamics, New York: Prentice Hall, 1962.

    Google Scholar 

  4. Pleskov, Yu.V. and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod (Rotating Disk Electrode), Moscow: Nauka, 1972.

    Google Scholar 

  5. Bethe, A. and Toropoff, T., Z. Phys. Chem., 1914, vol. 88, p. 686.

    Google Scholar 

  6. Kressman, T.R.E. and Tye, F.L., Disc. Faraday Soc., 1956, vol. 21, p. 185.

    Article  Google Scholar 

  7. Frilette, V.J., J. Phys. Chem., 1956, vol. 60, no. 4, p. 435.

    Article  CAS  Google Scholar 

  8. Greben', V.P., Pivovarov, N.Ya., Kovarskii, N.Ya., and Nefedova, G.Z., Zh. Fiz. Khim., 1978, vol. 52, p. 2641.

    Google Scholar 

  9. Simons, R., Nature, 1979, vol. 280, p. 824.

    Article  CAS  Google Scholar 

  10. Gnusin, N.P., Zabolotskii, V.I., Shel’deshov, N.V., Illarionova, V.M., Nefedova, G.Z., and Freidlin, Yu.G., Zh. Prikl. Khim., 1980, vol. 53, p. 1069.

    CAS  Google Scholar 

  11. Simons, R., Electrochim. Acta, 1984, vol. 29, p. 151.

    Article  CAS  Google Scholar 

  12. Moon-Sung, Kang, Yong-Jin, Choi, Hong-Joo, Lee, and Seung-Hyeon, Moon, J. Colloid Interface Sci., 2004, vol. 273, p. 523.

    Article  CAS  Google Scholar 

  13. Yoshinobu, Tanaka, J. Membr. Sci., 2007, vol. 303, p. 234.

    Article  Google Scholar 

  14. Shel'deshov, N.V., and Zabolotskii, V.I., in Membrany i membrannye tekhnologii (Membranes and Membrane Technologies), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2013, 612 p.

    Google Scholar 

  15. Yoshinobu, Tanaka, Ion Exchange Membranes, Vol. 12: Fundamentals and Applications (Membrane Science and Technology), Amsterdam: Elsevier, 2010.

    Google Scholar 

  16. Zabolotskii, V.I., Sharafan, M.V., Shel’deshov, N.V., and Lovtsov, E.G., Russ. J. Electrochem., 2008, vol. 44, no. 2, p. 141.

    Article  CAS  Google Scholar 

  17. Zabolotskii, V.I., Sharafan, M.V., and Shel’deshov, N.V., Russ. J. Electrochem., 2008, vol. 44, no. 10, p. 1127.

    Article  CAS  Google Scholar 

  18. Timashev, S.F. and Kirganova, E.V., Elektrokhimiya, 1981, vol. 17, p. 440.

    CAS  Google Scholar 

  19. Zabolotskii, V.I., Gnusin, N.P., and Shel’deshov, N.V., Elektrokhimiya, 1986, vol. 22, p. 1676.

    CAS  Google Scholar 

  20. Umnov, V.V., Shel’deshov, N.V., and Zabolotskii, V.I., Russ. J. Electrochem., 1999, vol. 35, p. 871.

    CAS  Google Scholar 

  21. Umnov, V.V., Shel’deshov, N.V., and Zabolotskii, V.I., Russ. J. Electrochem., 1999, vol. 35, no. 4, p. 411.

    CAS  Google Scholar 

  22. Markin, V.S. and Chizmadzhev, Yu.A., Itogi Nauki Tekh.,Ser.: Elektrokhim., 1976, vol. 11, p. 5.

    CAS  Google Scholar 

  23. Sata, T., Ion Exchange Membranes. Preparation, Characterization, Modification and Application, Royal Society of Chemistry, 2004.

    Google Scholar 

  24. Encyclopedia of Membrane Science and Technology, Vol. 3, Hoek, E.M.V. and Tarabara, V.V., Eds., Wiley, 2013.

  25. Zagorodnykh, L.A., Bobreshova, O.V., Kulintsov, P.I., and Aristov, I.V., Russ. J. Electrochem., 2005, vol. 41, p. 275.

    Article  CAS  Google Scholar 

  26. Galus, Z., Teoretyczne Podstawy Electroanalizy Chemiczne, Warszawa: Panstwowe Wydawnictwo Naukowe, 1971 (translated into Russian).

    Google Scholar 

  27. Techniques of chemistry. Investigation of rates and mechanism of reactions, Hammes, G.G., Ed., New York: Wiley, 1974.

  28. Tur’yan, Ya.I., Khimicheskie reaktsii v polyarografii (Chemical Reactions in Polarography) Moscow: Khimiya, 1980.

    Google Scholar 

  29. Wiesner, K., Z. Electrochem., 1943, vol. 49, p. 164.

    CAS  Google Scholar 

  30. Brdička, R. and Wiesner, K., Naturwissenschaften, 1943, vol. 31, p. 247.

    Article  Google Scholar 

  31. Koutecký, J. and Brdička, R., Collect. Czech. Chem. Commun., 1947, vol. 12, p. 337.

    Article  Google Scholar 

  32. Vetter, K.J., Z. Elektrochem., 1951, vol. 55, p. 121.

    CAS  Google Scholar 

  33. Gerischer, H. and Vetter, K.J., Z. Phys. Chem., 1951, vol. 197, p. 92.

    Article  CAS  Google Scholar 

  34. Gnusin, N.P., Elektrokhimiya, 2002, vol. 38, p. 942.

    Google Scholar 

  35. Voronkov, D.A. and Korzhov, E.N., Vestn. Voronezh Un-ta. Ser. Khim., Biol., Farmats., 2004, no. 1, p. 38.

    Google Scholar 

  36. Voronkov, D.A. and Korzhov, E.N., Kondens. Sredy Mezhfaznye Granitsy, 2006, vol. 8, p. 12.

    Google Scholar 

  37. Isaev, N.I., Zolotareva, R.I., and Ivanov, E.M., Zh. Fiz. Khim., 1967, vol. 41, p. 849.

    CAS  Google Scholar 

  38. Makai, A.I. and Turner, I.C., J. Chem. Soc., Faraday Trans., 1978, vol. 74, p. 2850.

    Article  CAS  Google Scholar 

  39. Bobreshova, O.V. and Kulintsov, P.I., Zh. Fiz. Khim., 1987, vol. 61, p. 277.

    CAS  Google Scholar 

  40. Sharafan, M. and Zabolotsky, V., Desalination, 2014, vol. 343, p. 194.

    Article  CAS  Google Scholar 

  41. Bugakov, V.V., Zabolotskii, V.I., and Sharafan, M.V., Sorbtsionnye Khromatogr. Protsessy, 2010, vol. 10, p. 870.

    Google Scholar 

  42. Spiegler, K.S., Desalination, 1971, vol. 9, p. 367.

    Article  CAS  Google Scholar 

  43. Vetter, K.J., Elektrochemische Kinetics, Berlin: Springer-Verlag, 1961 (translated into Russian).

    Book  Google Scholar 

  44. Nanomaterialy: svoistva i perspektivnye prilozheniya (Nanomaterials: Properties and Promising Applications), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2014.

  45. Kravchenko, T.A., Zolotukhina, E.V., Chaika, M.Yu., and Yaroslavtsev, A.B., Elektrokhimiya nanokompozitov metall-ionoobmennik (Electrochemistry of Nanocomposites Metal-Ion-exchanger), Moscow: Nauka, 2013.

    Google Scholar 

  46. Yaroslavtsev, A.B., Nanotechnol. Russ., 2009, vol. 4, no. 3, p. 44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zabolotskii.

Additional information

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

Original Russian Text © V.I. Zabolotskii, K.A. Lebedev, N.V. Shel’deshov, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 9, pp. 1073–1097.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskii, V.I., Lebedev, K.A. & Shel’deshov, N.V. Ion-transfer across a membrane in the presence of a preceding slow homogeneous chemical reaction in the diffusion layer. Russ J Electrochem 53, 966–979 (2017). https://doi.org/10.1134/S102319351709018X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351709018X

Keywords

Navigation