Skip to main content
Log in

The Limiting Current of Metal Electrodeposition on Rotating Disk Electrode: The Role of Solution Composition and Transport Properties

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The processes of mass transfer in the metal electrodeposition on a rotating disk electrode from the solution containing three sorts of ions (electroactive metal cation and indifferent electrolyte containing inactive cation and anion) are studied theoretically. The Nernst–Planck equations in the approximation of the solution electroneutrality reduced to a dimensionless form, which takes into account the elecrodiffusion and convective transfer of all types of ions, are used as the mathematical model. The numerical solution of the mathematical model is carried out by the finite volume method using a non-uniform grid. As a result of the numerical solution, the distributions of potential and ion concentrations are obtained with taking into account the interaction between the electric and hydrodynamic fields in the solutions with various concentrations of supporting electrolyte at various diffusion coefficients of ions of all sorts. The dependences of the limiting current of metal electrodeposition on the concentration of supporting electrolyte are obtained. When calculating the limiting current density in the absence of convection, the thickness of the Nernst diffusion layer is calculated taking into account the effective diffusion coefficient of the solution with three sorts of ions at various concentrations of supporting electrolyte. Using several examples with various ratios between the diffusion coefficients of the anion and inactive cation of the electrolyte, the error in the limiting current calculated using the Nernst diffusion layer approximation, as compared with the limiting current obtained taking into account the convective transport of ions, is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NY: Prentice-Hall, 1962.

    Google Scholar 

  2. Newman, J.S., Electrochemical Systems, Englewood Cliffs, NY: Prentice Hall, 1973.

    Google Scholar 

  3. Ibl, N. and Dossenbach, O., Convective Mass Transport, in Comprehensive Treatise of Electrochemistry, Boston, MA: Springer, 1983, p. 133-237.

    Google Scholar 

  4. Nernst, W., Theorie der reaktionsgeschwindigheit in heterogenen systemen, Z. Phys. Chem., 1904, vol. 47, p. 52.

    Article  CAS  Google Scholar 

  5. Brunner, E., Reaktionsgeschwindigheit in heterogenen systemen, Z. Phys. Chem., 1904, vol. 47, p. 56.

    Article  Google Scholar 

  6. Eucken, A., Über den stationären zustand zwischen polarisierten wasserstoffelektroden, Z. Phys. Chem., 1907, vol. 59, no. 1, p. 72.

    Article  Google Scholar 

  7. Aten, A.H.W., Sur l’allure des lignes courant-tension dans l’électrolyse, Recl. Trav. Chim. Pays-Bas, 1923, vol. 42, no. 4, p. 337.

    Article  CAS  Google Scholar 

  8. Slendyk, L., Polarographic studies with the dropping mercury cathode. Part XXI. Limiting currents of electrodeposition of metals and of hydrogen, Collect. Czechoslov. Chem. Commun., 1931, vol. 3, p. 385.

    Article  CAS  Google Scholar 

  9. Mac Gillavry, D. and Rideal, E.K., On the theory of limiting currents. I. Polarographic limiting currents, Recl. Trav. Chim. Pays-Bas, 1937, vol. 56, no. 10, p. 1013.

    Article  CAS  Google Scholar 

  10. Mac Gillavry, D., On the theory of limiting currents: II. Limiting currents of cells without and with an indifferent electrolyte, Recl. Trav. Chim. Pays-Bas, 1937, vol. 56, no. 11, p. 1039.

    Article  CAS  Google Scholar 

  11. Mac Gillavry, D., On the theory of limiting currents: III. General solutions with excess of one indifferent electrolyte, Recl. Trav. Chim. Pays-Bas, 1938, vol. 57, no. 1, p. 33.

    Article  CAS  Google Scholar 

  12. Hsueh, L. and Newman, J., The role of bisulfate ions in ionic migration effects, Ind. Eng. Chem. Fundamentals., 1971, vol. 10, no. 4, p. 615.

    Article  CAS  Google Scholar 

  13. Hornut, J.M., Valentin, G., and Storck, A., The film model for determining the effect of ionic migration in electrochemical systems, J. Appl. Electrochem., 1985, vol. 15, no. 2, p. 237.

    Article  CAS  Google Scholar 

  14. Sokirko, A.V., General problem of limiting diffusion-migration currents in a system with ions of three arbitrary charge numbers, J. Electroanal. Chem., 1994, vol. 364, p. 51.

    Article  CAS  Google Scholar 

  15. Pritzker, M.D., Steady-state multicomponent diffusion and migration to a planar electrode: Part 1. Analytical solution for the case of a single reacting species, J. Electroanal. Chem. Interfacial Electrochem., 1990, vol. 296, p. 1.

    Article  CAS  Google Scholar 

  16. Sokirko, A.V. and Bark, F.H., Diffusion-migration transport in a system with Butler-Volmer kinetics, an exact solution, Electrochim. Acta, 1995, vol. 40, no. 12, p. 1983.

    Article  CAS  Google Scholar 

  17. Bortels, L., Van den Bossche, B., Deconinck, J., Vandeputte, S., and Hubin, A., Analytical solution for the steady-state diffusion and migration involving multiple reaction ions. Application to the identification of Butler-Volmer kinetic parameters for the ferri-/ferrocyanide redox couple, J. Electroanal. Chem., 1997, vol. 429, p. 139.

    Article  CAS  Google Scholar 

  18. Hicks, M.T. and Fedkiw, P.S., Effects of supporting electrolyte on the mass-transfer limited current for coupled chemical-electrochemical reactions, J. Electroanal. Chem., 1997, vol. 424, p. 75.

    Article  CAS  Google Scholar 

  19. Spiegler, K.S., Polarization at ion exchange membrane-solution interfaces. Desalination, 1971, vol. 9, no. 4, p. 367.

    Article  CAS  Google Scholar 

  20. Sistat, P. and Pourcelly, G., Steady-state ion transport through homopolar ion-exchange membranes: an analytical solution of the Nernst–Planck equations for a 1 : 1 electrolyte under the electroneutrality assumption, J. Electroanal. Chem., 1999, vol. 460, p. 53.

    Article  CAS  Google Scholar 

  21. Volgin, V.M. and Davydov, A.D., Ionic transport through ion-exchange and bipolar membranes, J. Membr. Sci., 2005, vol. 259, p. 110.

    Article  CAS  Google Scholar 

  22. Sioda, R.E., Current–potential dependence in the flow electrolysis on a porous electrode, J. Electroanal. Chem., 1972, vol. 34, p. 399.

    Article  CAS  Google Scholar 

  23. Trainham, J.A. and Newman, J., A flow-through porous electrode model: application to metal-ion removal from dilute streams, J. Electrochem. Soc., 1977, vol. 124, no. 10, p. 1528.

    Article  CAS  Google Scholar 

  24. Milshtein, J.D., Tenny, K.M., Barton, J.L., Drake, J., Darling, R.M., and Brushett, F.R., Quantifying mass transfer rates in redox flow batteries, J. Electrochem. Soc., 2017, vol. 164, no. 11, p. E3265.

    Article  CAS  Google Scholar 

  25. Newman, J., Effect of ionic migration on limiting currents, Ind. Eng. Chem. Fundamentals., 1966, vol. 5, no. 4, p. 525.

    Article  CAS  Google Scholar 

  26. Newman, J., The effect of migration in laminar diffusion layers, Int. J. Heat Mass Transfer, 1967, vol. 10, no. 7, p. 983.

    Article  CAS  Google Scholar 

  27. Wein, O., The effect of migration in laminar diffusion layers, Collect. Czechoslov. Chem. Commun., 1988, vol. 53, no. 4, p. 697.

    Article  CAS  Google Scholar 

  28. Malev, V.V. and Durdin, Ya.V., Dependence of limiting current on a rotating disk electrode on concentration of indifferent electrolyte, Elektrokhimiya, 1966, vol. 2, p. 1354.

    CAS  Google Scholar 

  29. Kharkats, Yu.I., Calculation of limiting currents as function of base-electrolyte concentration in situation with convective transport, Soviet Electrochem., 1978, vol. 14, p. 984.

    Google Scholar 

  30. Volgin, V.M., Kabanova, T.B., and Davydov, A.D., Theoretical analysis of mass transfer during anodic dissolution of tungsten rotating disk electrode in alkaline solutions, Electrochim. Acta, 2020, vol. 336, Art. 135705.

    Article  CAS  Google Scholar 

  31. Nikonenko, V.V., Lebedev, K.A., and Suleimanov, S.S., Influence of the convective term in the Nernst–Planck equation on properties of ion transport through a layer of solution or membrane, Russ. J. Electrochem., 2009, vol. 45, p. 160.

    Article  CAS  Google Scholar 

  32. Damaskin, B.B. and Petrii, O.A., Introduction to Electrochemical Kinetics (in Russian), Moscow: Vyssh. Shkola, 1975.

    Google Scholar 

  33. Moukalled, F., Mangani, L., and Darwish, M., The Finite Volume Method in Computational Fluid Dynamics, Cham: Springer, 2016.

    Book  Google Scholar 

  34. Volgin, V.M. and Davydov, A.D., Numerical simulation of steady state ion transfer to rotating disk electrode: accuracy and computational efficiency, J. Electroanal. Chem., 2007, vol. 600, p. 171.

    Article  CAS  Google Scholar 

  35. Volgin, V.M. and Davydov, A.D., Effect of migration on homogeneous redox electrocatalysis at rotating disk electrode, Electrochim. Acta, 2018, vol. 259, p. 56.

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by the Ministry of Sciences and Higher Education of RF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Volgin or A. D. Davydov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volgin, V.M., Kabanova, T.B., Andreev, V.N. et al. The Limiting Current of Metal Electrodeposition on Rotating Disk Electrode: The Role of Solution Composition and Transport Properties. Russ J Electrochem 58, 766–780 (2022). https://doi.org/10.1134/S1023193522090154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522090154

Keywords:

Navigation