Skip to main content
Log in

Studies of kinetics of indirect in situ electrocatalytic oxidation of aliphatic alcohols to carboxylic acids by active forms of oxygen

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The model reagents substrates, 1-butanol and 1-nonanol are used to study the general kinetic regularities of indirect electrocatalytic oxidation of aliphatic alcohols on conventional (Pb/PbO2) and catalytically active (oxide–hydroxide–nickel) electrodes to the corresponding carboxylic acids (butyric and pelargonic) at the participation of active oxygen forms (AOF) generated in situ from O2, H2O2, and H2O. It is found that the kinetics of the alcohol oxidation reaction correspond to the pseudo first order when the studied AOF generation schemes are used. The effect of the nature of electrode materials on the kinetic regularities of oxidation of aliphatic alcohols to the corresponding carboxylic acids is established for the aspects pointing to the presence of different active forms of bound oxygen determining the possible reaction routes. On the basis of the obtained results, the main possible oxidation routes with the participation of active oxygen generated in situ are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budnikova, Yu.G., Ross. Khim. Zh., 2005, vol. 49, no. 5, p. 81.

    CAS  Google Scholar 

  2. Schäfer, H.J., C. R. Chim., 2011, vol. 14, p. 745.

    Article  Google Scholar 

  3. Frontana-Uribe, B.A., Little, R.D., Ibanez, J.G., Palma, A., and Vasquez-Medrano, R., Green Chem., 2010, vol. 12, p. 2099.

    Article  CAS  Google Scholar 

  4. Vysotskaya, N.A., Usp. Khim., 1973, vol. 47, p. 1843.

    Google Scholar 

  5. Sychev, A.Ya., Travin, S.O., Duka, G.G., and Skurlatov, Yu.I., Kataliticheskie reaktsii i okhrana okruzhayushchei sredy (Catalytic Reactions and Protection of Environment), Chisinau: Shtiintsa, 1983.

    Google Scholar 

  6. Brillas, E. and Martinez-Huitle, C.A., Synthetic Diamond Films: Preparation, Chemistry, Characterization and Applications, Hoboken, New Jersey, 2011.

    Book  Google Scholar 

  7. Kornienko, V.L., Khim. Interesakh Ustoich. Razvit., 2002, vol. 10, no. 4, p. 391.

    CAS  Google Scholar 

  8. Kolyagin, G.A. and Kornienko, V.L., Khim. Interesakh Ustoich. Razvit., 2000, vol. 8, no. 6, p. 803.

    CAS  Google Scholar 

  9. Kapalka, A., Foti, G., and Comninellis, Ch., Electrochim. Acta, 2009, vol. 54, p. 2018.

    Article  CAS  Google Scholar 

  10. Buxton, G.V., Clive, L., Greenstok, C.L., Helman, W.Ph., and Ross, A.R., J. Phys. Chem. Ref. Data, 1988, vol. 17, p. 513.

    Article  CAS  Google Scholar 

  11. Brillas, E., Sires, I., and Oturan, M.A., Chem. Rev., 2009, vol. 109, p. 6570.

    Article  CAS  Google Scholar 

  12. Pillai, U.R. and Sahle-Demessie, E., Appl. Catal., A, 2003, vol. 245, p. 103.

    Article  CAS  Google Scholar 

  13. Chaenko, N.V., Kornienko, G.V., Kosheleva, A.M., Maksimov, N.G., and Kornienko, V.L., Russ. J. Electrochem., 2011, vol. 47, p. 1146.

    Article  CAS  Google Scholar 

  14. Chen, Y.-L. and Chou, T.-C., J. Applied Electrochem., 1996, vol. 26, p. 543.

    Article  CAS  Google Scholar 

  15. Remorov, B.S., Avrutskaya, I.A., and Fioshin, M.Ya., Elektrokhimiya, 1981, vol. 17, p. 1547.

    CAS  Google Scholar 

  16. Fleischmann, M., Korinek, K., and Pletcher, D., J. Chem. Soc., Perkin Trans. 2, 1972, p. 1396.

    Google Scholar 

  17. Kishioka, S., Ohki, S., Ohsaka, T., and Tokuda, K., J. Electroanal. Chem. Interfacial Electrochem., 1998, vol. 452, p. 179.

    Article  CAS  Google Scholar 

  18. Chen, Y.-L. and Chou, T.-C., Ind. Eng. Chem. Res., 1996, vol. 35, p. 2172.

    Article  CAS  Google Scholar 

  19. Schäfer, H.J., Top. Curr. Chem., 1987, vol. 142, p. 102.

    Google Scholar 

  20. Lyalin, B.V. and Petrosyan, V.A., Russ. J. Electrochem., 2010, vol. 46, p. 1199.

    Article  CAS  Google Scholar 

  21. Lyalin, B.V. and Petrosyan, V.A., Russ. J. Electrochem., 2011, vol. 47, p. 1236.

    Article  CAS  Google Scholar 

  22. Ogibin, Yu.N., Elinson, N.M., and Nikishin, G.I., Russ. Chem. Rev., 2009, vol. 78, p. 89.

    Article  CAS  Google Scholar 

  23. Kosheleva, A.M., Chaenko, N.V., Kornienko, G.V., Vlasenko, V.I., and Kornienko, V.L., Russ. J. Electrochem., 2013, vol. 49, p. 96.

    Article  CAS  Google Scholar 

  24. Liu, J., Ye, J., Xu, C., Jiang, S.P., and Tong, Y., Electrochem. Commun., 2007, vol. 9, p. 2334.

    Article  CAS  Google Scholar 

  25. Tarasevich, M.R., Karichev, Z.R., Bogdanovskaya, V.A., Lubnin, E.N., and Kapustin, A.V., Electrochem. Commun., 2005, vol. 7, p. 141.

    Article  CAS  Google Scholar 

  26. Tarasevich, M.R. and Kuzov, A.V., Al’tern. Energ. Ekol., 2010, no. 7, p. 86.

    Google Scholar 

  27. Chaenko, N.V., Kornienko, V.L., Avrutskaya, I.A., and Fioshin, M.Ya., Zh. Prikl. Khim., 1987, vol. 60, p. 1339.

    CAS  Google Scholar 

  28. Kaulen, I. and Schäfer, H., Tetrahedron, 1982, vol. 38, p. 3299.

    Article  CAS  Google Scholar 

  29. Chaenko, N.V., Kornienko, G.V., Sokolenko, V.A., and Kornienko, V.L., Russ. J. Appl. Chem., 2014, vol. 87, p. 451.

    Article  Google Scholar 

  30. Dzhafarov, E.A., Elektroosazhdenie, svoistva i primenenie dvuokisi svintsa (Electrodeposition, Properties, and Application of Lead Dioxide), Baku: Az. SSR, 1967.

    Google Scholar 

  31. Kornienko, G.V., Chaenko, N.V., and Kornienko, V.L., Khim. Interesakh Ustoich. Razvit., 2006, vol. 14, no. 1, p. 23.

    CAS  Google Scholar 

  32. Gerasimov, Ya.I., Kurs fizicheskoi khimii (Course in Physical Chemistry), Moscow: Khimiya, 1973, vol. 2.

  33. Giamello, E., Rumori, P., Fubini, B., and Paganini, M.C., Appl. Magn. Reson., 1996, vol. 1, p. 173.

    Article  Google Scholar 

  34. Imamoto, M. and Lunsford, J.H., J. Phys. Chem., 1980, vol. 84, p. 3079.

    Article  Google Scholar 

  35. Bielski, B.H.J., Cabelli, D.E., and Arudi, R.L., J. Phys. Chem. Ref. Data, 1985, vol. 14, p. 1041.

    Article  CAS  Google Scholar 

  36. Simond, O., Schaller, V., and Comninellis, Ch., Electrochim. Acta, 1997, vol. 42, p. 2009.

    Article  CAS  Google Scholar 

  37. Simic, M., Neta, P., and Hayon, E., J. Phys. Chem., 1969, vol. 73, p. 3794.

    Article  CAS  Google Scholar 

  38. Bianchini, C. and Shen, P.K., Chem. Rev., 2009, vol. 109, p. 4183.

    Article  CAS  Google Scholar 

  39. Miyoshi, A., Matsui, H., and Washida, N., J. Phys. Chem., 1990, vol. 94, p. 3016.

    Article  CAS  Google Scholar 

  40. Remorov, B.S., Avrutskaya, I.A., and Fioshin, M.Ya., Elektrokhimiya, 1981, vol. 17, p. 743.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Kornienko.

Additional information

Presented at the 18th AllRussian Conference on Organic Electrochemistry, Tambov, September 15–19, 2014.

Original Russian Text © A.M. Kosheleva, N.G. Maksimov, G.V. Kornienko, V.L. Kornienko, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 11, pp. 1216–1222.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosheleva, A.M., Maksimov, N.G., Kornienko, G.V. et al. Studies of kinetics of indirect in situ electrocatalytic oxidation of aliphatic alcohols to carboxylic acids by active forms of oxygen. Russ J Electrochem 51, 1079–1085 (2015). https://doi.org/10.1134/S1023193515110075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515110075

Keywords

Navigation