Skip to main content
Log in

Electrocatalytic Oxidation of Ethanol on the Platinum Electrode in Solution of Methanesulfonic Acid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrooxidation of ethanol (C2H5OH) is studied on the surface of platinum (Pt) electrode in 1.0 М aqueous solutions of methanesulfonic acid (CH3SO3H). It is found that the complete displacement of adsorbed hydrogen from the Pt surface in the potential region of 0.03–0.4 V (r.h.e.) occurs at the ethanol concentration 2.0 М C2H5OH. In the anodic scanning region, three ethanol oxidation waves are observed in the potential regions E: 0.8–1.1, 1.15–1.45, and 1.5–1.8 V (r.h.e.). The analysis of products of preparative electrolysis in the aforementioned potential regions carried out by the methods of molecular (UV, near IR-Fourier and Raman) spectroscopy has shown that the first wave of ethanol oxidation corresponds to the formation of acetaldehyde, the second wave corresponds to acetic acid, and the third wave is associated with the formation of carbon dioxide (СO2). In the reverse cathodic scan, the anodic wave with the peak at 0.55 V (r.h.e.) appears which is associated with the direct oxidation of ethanol to СO2. It is assumed that the mechanism of ethanol electrooxidation on Pt in 1.0 М СH3SO3H is analogous to that realized in sulfuric acid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Palden, T., Onghena, B., Regadío, M., and Binnemans, K., Methanesulfonic acid: a sustainable acidic solvent for recovering metals from jarosite residue of the zinc industry, Green Chem., 2019, vol. 21, p. 5394. https://doi.org/10.1039/c9gc02238d

    Article  CAS  Google Scholar 

  2. Walsh, F.C. and Ponce de León, C., Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid, Surf. Coat. Technol., 2014, vol. 259, p. 676. https://doi.org/10.1016/j.surfcoat.2014.10.010

    Article  CAS  Google Scholar 

  3. Kim, G., Kim, Y., Yim, T., and Kwon, K., Effects of methanesulfonic acid on electrolyte for vanadium redox flow batteries, J. Ind. Eng. Chem., 2021, vol. 99, p. 326. https://doi.org/10.1016/j.jiec.2021.04.043

    Article  CAS  Google Scholar 

  4. Krishna, M., Wallis, L.P.J., Wills, R.G.A., Hall, D., and Shah, A.A., Measurement of key electrolyte properties for improved performance of the soluble lead flow battery, Int. J. Hydrogen Energy, 2017, vol. 42(29), p. 18491. https://doi.org/10.1016/j.ijhydene.2017.05.0

    Article  CAS  Google Scholar 

  5. Vijayalekshmi, V. and Khastgir, D., Eco-friendly methanesulfonic acid and sodium salt of dodecylbenzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications, J. Membr. Sci., 2017, vol. 523, p. 45. https://doi.org/10.1016/j.memsci.2016.09.058

    Article  CAS  Google Scholar 

  6. Akhmedov, M.A., Khidirov, S.S., and Khibiev, K.S., Modification of cellulose in the solution of methanesulfonic acid. Russ. Chem. Bull., 2021, no. 2(70), p. 412. https://doi.org/10.1007/s11172-021-3101-y

  7. Akhmedov, M.A. and Khidirov, Sh.Sh., Anodic processes at smooth platinum electrode in concentrated solution of methanesulfonic acid, Russ. J. Electrochem., 2019, vol. 55, p. 579. https://doi.org/10.1134/S1023193519060028

  8. Akhmedov, M.A. and Khidirov, Sh.Sh., Voltammetric determination of the composition and properties of methanesulfonic acid, J. Struct. Chem., 2014, vol. 55, no. 6, p. 1148. https://doi.org/10.1134/S0022476614060249

  9. Sandoval, A.P., Suárez-Herrera, M.F., Climent, V., and Feliu, J.M., Interaction of water with methanesulfonic acid on Pt single crystal electrodes, Electrochem. Comm., 2015, vol. 50, p. 47. https://doi.org/10.1016/j.elecom.2014.11.007

    Article  CAS  Google Scholar 

  10. Trasatti, S. and Petrii, O.A., Real surface area measurements in electrochemistry, J. Electroanal. Chem., 1992, vol. 327, p. 353. https://doi.org/10.1016/0022-0728(92)80162-w

    Article  CAS  Google Scholar 

  11. Bagotsky, V.S. and Vasiliev, Yu.B., in Uspekhi elektrokhimii organicheskikh soedinenii (Successes in Electrochemistry of Organic Compounds), Moscow: Nauka, 1966, p. 40.

  12. Damaskin, B.B. and Petrii, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vyssh. Shkola, 1983.

  13. Scholz, F., Electro-analytical Methods. Guide to Experiments and Applications, Berlin: Springer, 2002.

    Google Scholar 

  14. Akhmedov, M.A., Ibragimova, K.O., and Khidirov, Sh.Sh., Comparative evaluation of dimethylsulfoxide and dimethylsulfone adsorption on a smooth platinum electrode in acidic environment, Russ. J. Electrochem., 2020, vol. 56, p. 396. https://doi.org/10.1134/S1023193520040023

    Article  CAS  Google Scholar 

  15. Pentin, Yu.A. and Kuramshina, G.M., Osnovy molekulyarnoi spektroskopii (The Fundamentals of Molecular Spectroscopy), Moscow: Mir, 2008.

  16. Burikov, S.A., Dolenko, S., Dolenko, T., Patsaeva Svetlana, and Yuzhakov, V., Decomposition of water Raman stretching band with a combination of optimization methods, Mol. Phys., 2010, vol. 108, no. 6, p. 739. https://doi.org/10.1080/00268970903567288

    Article  CAS  Google Scholar 

  17. Harris, K.R., Newitt, P.J., and Derlacki, Z.J., Alcohol tracer diffusion, density, NMR and FTIR studies of aqueous ethanol and 2,2,2-trifluoroethanol solutions at 25°C, J. Chem. Soc. Faraday Trans, 1998, vol. 94, no. 14, p. 1963. https://doi.org/10.1039/a802567c

    Article  CAS  Google Scholar 

  18. Dolenko, T.A., Burikov, S.A., Dolenko, S.A., Efitorov, A.O., Plastinin, I.V., Yuzhakov, V.I., and Patsaeva, S.V., Raman spectroscopy of water–ethanol solutions: the estimation of hydrogen bonding energy and the appearance of clathrate-like structures in solutions, J. Phys. Chem. A, 2015, vol. 119, no. 44, p.10806. https://doi.org/10.1021/acs.jpca.5b06678

    Article  CAS  PubMed  Google Scholar 

  19. Kuzov, A.V., Adsorption and electrooxidation of ethanol on platinum-containing catalysts in acidic media, Al’tern. Energ. Ekol., 2010, no. 5(85), p. 126.

  20. Podlovchenko, B.I., On the processes occurring during the introduction of a platinized platinum electrode into solutions of C2H5OH, H–C3H7OH and H–C4H9OH, Elektrokhimiya, 1965, vol. 1, p. 101.

    CAS  Google Scholar 

  21. Tarasevich, M.R. and Korchagin, O.V., Electrocatalysis and pH (review), Russ. J. Electrochem., 2013, vol. 49, p. 676. https://doi.org/10.1134/S102319351307015X

    Article  CAS  Google Scholar 

  22. Danilov, A.I., Molodkina, E. B., and Polukarov, Yu.M., Surface and subsurface oxygen on platinum. Solution 0.5 M H2SO4, Russ. J. Electrochem., 2004, vol. 40, p. 667.

    Google Scholar 

  23. Tarasevich, M.R., Korchagin, O.V., and Kuzov, A.V., Electrocatalysis of anodic oxidation of ethanol, Russ. Chem. Rev., 2013, no. 11(82), p. 1047. https://doi.org/10.1070/RC2013v082n11ABEH004276

  24. Podlovchenko, B.I., Petrii, O.A., Frumkin, A.N., and Hira Lal, Behavior of a platinized platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes and formic acid, J. Electroanal. Chem., 1966, no. 1(11), p. 12. https://doi.org/10.1016/0022-0728(66)80053-0

  25. Suib, S.L., New and Future Developments in Catalysis Batteries, Hydrogen Storage and Fuel Cells, Amsterdam: Elsevier, 2013.

    Google Scholar 

  26. Yaqoob, L., Noor, T., and Iqbal, N., A comprehensive and critical review of the recent progress in electrocatalysts for the ethanol oxidation reaction, RSC Adv., 2021, no. 11(27), p. 16768. https://doi.org/10.1039/D1RA01841H

  27. Izotova, V.V., Tyurin, Yu.M., and Volodin, G.F., Influence of the composition of the solution on the limiting filling of the Pt anode with oxides, Elektrokhimiya, 1970, vol. 6, p. 1186.

    Google Scholar 

  28. Tyurin, Yu.M., Volodin, G.F., and Battalova, Yu.V., Simulation of cathodic CVA curves based on data on the CVA kinetics of oxygen layer reduction, Elektrokhimiya, 1981, vol. 17, p. 241.

    CAS  Google Scholar 

  29. Hommond, J.S. and Winograd, N., XPS spectroscopic study of potentiostatic and galvanostatic oxidation of Pt electrodes in H2SO4 and HClO4, J. Electroanal. Chem., 1977, vol. 78, p. 55. https://doi.org/10.1016/S0022-0728(77)80422-1

    Article  Google Scholar 

  30. Yakovleva, A.A., Bairamov, R.K., and Kirsanova, E.V., Study of the adsorption of cesium cations on platinum at high anodic potentials, Elektrokhimiya, 1976, vol. 12, p. 1317.

    CAS  Google Scholar 

  31. Tyurin, Yu.M. and Volodin, G.F., Influence of solution composition on the limiting filling of the Pt-anode with oxides, Elektrokhimiya, 1970, vol. 6, p. 1186.

    CAS  Google Scholar 

  32. Kazarinov, V.E. and Girina, G.P., Study of the structure of the double electric layer on platinum in the presence of acetate ions, Elektrokhimiya, 1967, vol. 3, p. 107.

    CAS  Google Scholar 

  33. Gavrilova, N.N. and Nazarov, V.V., Analiz poristoi struktury na osnove adsorbtsionnykh dannykh (Analysis of Porous Structures Based on Adsorption Data) Moscow: Mendeleev Inst., 2015.

  34. Ng, K.C., Burhan, M., Shahzad, M.W., and Ismail, A.B., A universal isotherm model to capture adsorption uptake and energy distribution of porous heterogeneous surface, Sci. Rep., 2017, vol. 7(1), p. 10634. https://doi.org/10.1038/s41598-017-11156-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alavi, S., Ohmura, R., and Ripmeester, J.A., A molecular dynamics study of ethanol–water hydrogen bonding in binary structure I clathrate hydrate with CO2, Chem. Phys., 2011, vol. 134(5), p. 054702. https://doi.org/10.1063/1.3548868

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out with the use of equipment of the Centers of Collective Use at the Dagestan State University and the Dagestan Federal Research Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Akhmedov or Sh. Sh. Khidirov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Published based on the materials of the 15th International Conference “Fundamental Problems of Solid State Ionics,” Chernogolovka, November 30–December 07, 2020.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmedov, M.A., Khidirov, S.S. Electrocatalytic Oxidation of Ethanol on the Platinum Electrode in Solution of Methanesulfonic Acid. Russ J Electrochem 58, 482–489 (2022). https://doi.org/10.1134/S1023193522060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522060039

Keywords:

Navigation