Skip to main content
Log in

Computer simulation of active layer of fuel cell electrode with polymer electrolyte: Complete combined carbon support grains, calculation of overall characteristics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Full computer simulation of the active layer of a fuel cell cathode with polymer electrolyte and complete combined carbon support grains is carried out. The active layer structure included two types of equal-size cubic grains (combined support grains and voids) together forming a cubic lattice. Also, the structure of combined grains was modeled; a carbon cluster was formed in them, with the oxygen reduction process occurring on its surface; the rest of the grain volume was filled by polymer electrolyte. The completeness of the grains consisted in the fact that they were characterized by 3D electron conductivity, ability to take part in the transport of protons in the active layer and the carbon cluster in the grains had the maximum possible surface area. Calculation of overall currents of oxygen cathodes with full combined carbon support grains, Nafion, and platinum yielded the following result. At t = 80°C, pressure p* = 101 kPa, cathode potential E 0 = 0.8 V, and optimum active layer thickness Δ* = 20 μm, maximum overall current I max = 0.38 A/cm2, maximum power density W max = 0.31 W/cm2. At potential E 0 = 0.7 V, Δ* = 9.8 μm, I max = 1.13 A/cm2, W max = 0.79 W/cm2. At potential E 0 = 0.6 V, Δ* = 3.8 μm, I max = 2.95 A/cm2, W max = 1.76 W/cm2. At potential E 0 = 0.5 V, Δ* = 1.4 μm, I max = 7.71 A/cm2, W max = 3.86 W/cm2. The overall current values are higher than those observed experimentally at the given cathode potentials. The discrepancy is explained by the fact that calculations of active cathode layers with a practically regular structure were carried out. All combined support grains in them are full and identical, while in fact the active layer structure is not characterized by the properties of fullness and equivalence. The second circumstance is that experimental active layers rarely have a strictly optimum thickness. Meanwhile deviation from this optimum results in losses in current. Transition to cathodes with combined grains has additional advantages. (1) In such grains, all platinum participates in current generation, the catalyst utilization degree reaches 100%. (2) Oxygen can enter the active layer not through small Knudsen pores, but through large (with the diameter of hundreds and more nm) gas pores, in which usual molecular gas diffusion occurs, so that diffusion limitations in the active layer become less significant. 3. In the active layer, the danger of gas pore flooding by evolving water decreases. Now, water vapor is much more easily removed from large gas pores directing then into the gas-diffusion layer pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Toplivnye elementy) (Macrokinetics of Processes in Porous Media (Fuel Cells)), Moscow: Nauka, 1971.

    Google Scholar 

  2. Chizmadzhev, Yu.A. and Chirkov, Yu.G., Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complex Electrochemical Reactions), Kazarinov, V.E., Ed., Moscow: Nauka, 1981.

  3. Chizmadzhev, Yu.A. and Chirkov, Yu.G., in Comprehensive Treatise of Electrochemistry, Yeager, E., Bockris, J.O’M., Conway, B.E., and Sarangapani, S., Eds., New York, London: Plenum Press, 1983, vol. 6, p. 356.

  4. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2012, vol. 48, no. 11.

    Google Scholar 

  5. Uchida, M., Aoyama, Y., Eda, E., and Ohta, A., J. Electrochem. Soc., 1995, vol. 142, p. 463.

    Article  CAS  Google Scholar 

  6. Uchida, M., Aoyama, Y., Eda, E., and Ohta, A., J. Electrochem. Soc., 1995, vol. 142, p. 4143.

    Article  CAS  Google Scholar 

  7. Uchida, M., Fuuoka, Y., Sugawara, Y., Eda, N., and Ohta, A., J. Electrochem. Soc., 1996, vol. 143, p. 2245.

    Article  CAS  Google Scholar 

  8. Uchida, M., Fukuoka, Y., Sugawara, Y., Ohara, H., and Ohta, A., J. Electrochem. Soc., 1998, vol. 145, p. 3708.

    Article  CAS  Google Scholar 

  9. Uchida, H., Song, J.M., Suzuki, S., Nakazawa, E., Baba, N., and Watanabe, M., J. Phys. Chem. B, vol. 110, p. 13319.

  10. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2013, vol. 49, no. 2.

    Google Scholar 

  11. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2010, vol. 46, p. 501.

    Article  CAS  Google Scholar 

  12. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Zhang, J., Ed., 2008, Springer Verlag London Ltd.

    Google Scholar 

  13. Malek, K., Eikerling, M., Wang, Q., Navessiu, T., and Liu, Z., J. Phys. Chem., vol. 111, p. 13627.

  14. Izvekov, S. and Violi, A., J. Chem. Theory Comput., 2006, vol. 2, p. 504.

    Article  CAS  Google Scholar 

  15. Kwiecien, M.J., Macdonald, I.F., and Dullien, F.A.L., J. Microsc, 1990, vol. 159, p. 343.

    Article  Google Scholar 

  16. Lymberopoulos, D.P. and Payatakes, A.C., J. Colloid Interface Sci., 1992, vol. 150, p. 61.

    Article  CAS  Google Scholar 

  17. Spanne, P., Thovert, J.F., Jacquin, J.C., Lindquist, W.B., Jones, K.W., and Adler, P.M., Phys. Rev. Lett., 1994, vol. 73, p. 2001.

    Article  CAS  Google Scholar 

  18. Baldwin, C.A., Sederman, A.J., Mantle, M.D., Alexander, P., and Gladden, L.F., J. Colloid Interface Sci., 1996, vol. 181, p. 79.

    Article  CAS  Google Scholar 

  19. Xie, J., Wood, I.D.L., Wayne, D.M., Zawodzinski, T.A., Atanassov, P., and Borup, R.L., J. Electrochem. Soc., 2005, vol. 152, p. A104.

    Article  CAS  Google Scholar 

  20. Mukherjee, P.P. and Wang, C.Y., J. Electrochem. Soc., 2006, vol. 153, p. A840.

    Article  CAS  Google Scholar 

  21. Rong, F., Huang, C., Liu, Z.-S., Song, D., and Wang, Q., J. Power Sources, 2008, vol. 175, p. 699.

    Article  CAS  Google Scholar 

  22. Rong, F., Huang, C., Liu, Z.-S., Song, D., and Wang, Q., J. Power Sources, 2008, vol. 175, p. 712.

    Article  CAS  Google Scholar 

  23. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Percolation, Algorithms), Moscow: Editorial URSS, 2001.

    Google Scholar 

  24. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 1999, vol. 35, p. 1281.

    CAS  Google Scholar 

  25. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2011, vol. 47, p. 71.

    Article  CAS  Google Scholar 

  26. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2006, vol. 42, p. 715.

    Article  CAS  Google Scholar 

  27. Malek, K. and Coppens, M.O., J. Chem. Phys. B, 2003, vol. 119, p. 2801.

    Article  CAS  Google Scholar 

  28. Damjanovic, A., Genshaw, M.A., and Bockris, J.O.’M., J. Phys. Chem., 1966, vol. 45, p. 4057.

    Article  CAS  Google Scholar 

  29. Appleby, A.J., J. Electrochem. Soc., 1970, vol. 117, p. 328.

    Article  CAS  Google Scholar 

  30. Sepa, D.B., Vojnovic, V., and Damjanovic, A., Electrochim. Acta, 1981, vol. 26, p. 781.

    Article  CAS  Google Scholar 

  31. Parthasarathy, A., Martin, C.R., and Srinivasan, S., J. Electrochem. Soc., 1991, vol. 138, p. 916.

    Article  CAS  Google Scholar 

  32. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2006, vol. 42, p. 722.

    Article  CAS  Google Scholar 

  33. Parthasarathy, A., Srinivasan, S., Appleby, A.J., and Martin, C.R., J. Electrochem. Soc., 1992, vol. 139, p. 2530.

    Article  CAS  Google Scholar 

  34. Mitsushima, S., Araki, N., Kamiya, N., and Ota, K., J. Electrochem. Soc., 2002, vol. 149, p. A1371.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, 2013, published in Elektrokhimiya, 2013, Vol. 49, No. 5, pp. 480–494.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Computer simulation of active layer of fuel cell electrode with polymer electrolyte: Complete combined carbon support grains, calculation of overall characteristics. Russ J Electrochem 49, 428–440 (2013). https://doi.org/10.1134/S1023193513050030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513050030

Keywords

Navigation