Skip to main content
Log in

Computer-aided simulation of the cathodic active layer in fuel cells with solid polymer electrolyte: the nature of overall current transient

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Total computer-aided simulation of the structure and current-generation processes in the cathodic active layer of a fuel cell with solid polymer electrolyte is carried out. Not only the transport structure of the active layer but also the structure of support grains (agglomerates of carbon particles with platinum-covered surface) are modeled. The process of active layer functioning under potentiostatic conditions is studied. It is demonstrated for the first time how the moisture exchange in the pores of support grains affects the cathode overall characteristics. The time variations of the overall current, the average temperature of the active layer, and the total degree of water-flooding of support-grain pores within the active layer are calculated by numerical methods. It is shown that for the fuel cell voltage of 0.6 V and its working temperature of 80°C, the flooding process dominates over the process of drying of pores in support grains. In 10–15 s, all support-grain pores turn out to be entirely filled with water. Then they begin functioning not in the kinetic mode (in the moment of switching-on the current, the Knudsen diffusion of oxygen in the support grains is observed) but in the inner-diffusion mode. As a result, the overall cathodic current decreases from its initial value of 4.323 A/cm2 to its final value of 0.526 A/cm2 and the active layer temperature decreases from the initial value of 102°C to the final value of 82.5°C. The overall current transient is studied also experimentally, the qualitative coincidence of theoretical and experimental data is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubio, M.A., Urquia, A., and Dormido, S., J. Power Sources, 2007, vol. 171, p. 670.

    Article  CAS  Google Scholar 

  2. Li, H., Tang, Y., Wang, Z., Shi, Z., Wu, S., Song, D., Zhang, J., Fatih, K., Zhang, J., Wang, X., Liu, Z., Abouatallah, R., and Mazza, A., J. Power Sources, 2008, vol. 178, p. 103.

    Article  CAS  Google Scholar 

  3. Yousfi-Steiner, N., Mocoteguy, Ph., Candusso, D., Hissel, D., Hernandez, A., and Aslanides, A., J. Power Sources, 2008, vol. 183, p. 260.

    Article  CAS  Google Scholar 

  4. Weber, A.Z. and Hickner, M.A., Electrochim. Acta, 2008, vol. 53, p. 7668.

    Article  CAS  Google Scholar 

  5. Swamy, T., Kumbur, E.C., and Mench, M.M., J. Electrochem. Soc., 2010, vol. 157, p. B77.

  6. Wang, X. and Nguyen, T.V., J. Electrochem. Soc., 2010, vol. 157, p. B496.

  7. Rubio, M.A., Urquia, A., and Dormido, S., Intern. J. Hydrogen Energy, 2010, vol. 35, p. 2586.

    Article  CAS  Google Scholar 

  8. Jiao, K. and Li, X., Prog. Energy Combust. Sci., 2011, vol. 37, p. 221.

    Article  CAS  Google Scholar 

  9. Li, Chen., Hui-Bao, Luan., Ya-Ling, He., and Wen-Quan, Tao., Int. J. Therm. Sci., 2012, vol. 51, p. 132.

    Article  Google Scholar 

  10. Chirkov, Yu.G. and Rostokin, V.I., Al’ternativnaya. Energetika i Ekologiya, 2014, no. 6, p. 8.

    Google Scholar 

  11. Chirkov, Yu.G. and Rostokin, V.I., Al’ternativnaya Energetika i Ekologiya, 2014, no. 9, p. 8.

    Google Scholar 

  12. Chirkov, Yu.G., Al’ternativnaya Energetika i Ekologiya, 2014, no. 9, p. 59.

    Google Scholar 

  13. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Toplivnye elementy) (Macrikinetics of Processes in Porous Media (Fuel Cells)), Moscow Nauka, 1971.

    Google Scholar 

  14. Chizmadzhev, Yu.A. and Chirkov, Yu.G., in Comprehensive Treatise of Electrochemistry, Yeager, E., Bockris, J.O’M., Conway, B.E., and Sarangapani, S., New York: Plenum Press, 1983, vol. 6, p. 356.

    Google Scholar 

  15. Chirkov, Yu.G. and Rostokin, V.I., Al’ternativnaya Energetika i Ekologiya, 2014, no. 14, p. 58.

    Google Scholar 

  16. PEM Fuel Cell Electrocatalysis and Catalyst Layers: Fundamentals and Applications, Zhang, J.L., Ed., London Springer, 2008.

  17. Xie, J., Wood, I.D.L., Wayne, D.M., Zawodzinski, T.A., Atanassov, P., and Borup, R.L., J. Electrochem. Soc., 2005, vol. 152, p. A104.

  18. Mukherjee, P.P. and Wang, C.Y., J. Electrochem. Soc., 2006, vol. 153, p. A840.

    Article  CAS  Google Scholar 

  19. Rong, F., Huang, C., Liu, Z.-S., Song, D., and Wang, Q., J. Power Sources, 2008, vol. 175, p. 699.

    Article  CAS  Google Scholar 

  20. Rong, F., Huang, C., Liu, Z.-S., Song, D, and Wang, Q., J. Power Sources, 2008, vol. 175, p. 712.

    Article  CAS  Google Scholar 

  21. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2012, vol. 48, p. 1086.

    Article  CAS  Google Scholar 

  22. Tarasevich, Yu.Yu., Perkolyatsiya teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2001.

    Google Scholar 

  23. Chirkov, Yu.G. and Rostokin, V.I., Al’ternativnaya Energetika i Ekologiya, 2012, no. 2, p. 132.

    Google Scholar 

  24. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2013, vol. 49, p. 149.

    Article  CAS  Google Scholar 

  25. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2014, vol. 50, p. 872.

    Article  CAS  Google Scholar 

  26. Parthasarathy, A., Srinivasan, S., Appleby, A.J., and Martin, C.R., J. Electrochem. Soc., 1992, vol. 139, p. 2530.

    Article  CAS  Google Scholar 

  27. Chirkov, Yu.G. and Rostokin, V.I., Al’ternativnaya Energetika i Ekologiya, 2014, no. 17, p. 57.

    Google Scholar 

  28. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2006, vol. 42, p. 722.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, A.V. Kuzov, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 2, pp. 142–156.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkov, Y.G., Rostokin, V.I. & Kuzov, A.V. Computer-aided simulation of the cathodic active layer in fuel cells with solid polymer electrolyte: the nature of overall current transient. Russ J Electrochem 52, 123–135 (2016). https://doi.org/10.1134/S1023193516020026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516020026

Keywords

Navigation