Skip to main content
Log in

Active layer of fuel cell electrode with polymer electrolyte: Nature of proton and oxygen supply channels

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The nature of proton and oxygen supply channels in the active layer of a cathode of fuel cell with polymer electrolyte is discussed. There are three types of electron, proton, and oxygen carriers in the active layer: agglomerates of carbon particles with supported platinum (support grains), agglomerates of Nafion molecules (Nafion grains), and void grains. In computer simulation of the active layer structure, the three types of grains were assumed equal-sized, cube-shaped and arranged into a cubic node lattice (in the terms of the percolation theory). Impossibility of forming on the basis solely the above three grain types of three percolation clusters (“electron”, “proton”, and “gas”) that could supply all that is required for the electrochemical process is proved. But in this, the following question arises: how can satisfactory operation of the cathode with polymer electrolyte be provided? The required supply of protons and oxygen can be provided only if the support grains can feature not only electronic conductivity, but can also participate in transport of both protons and oxygen. As a result, the transport of protons and oxygen is carried out via special combined percolation clusters that must include apart from the support grains either Nafion grains (combined “proton” cluster) or void grains (combined “gas” cluster). The paper describes the technique of calculation of effective specific conductivity of a combined “proton” cluster. The effective specific diffusion coefficient of a combined “gas” cluster can also be calculated in a similar way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Toplivnye elementy) (Macrokinetics of Processes in Porous Mediums (Fuel Cells)), Moscow: Nauka, 1971.

    Google Scholar 

  2. Chizmadzhev, Yu.A. and Chirkov, Yu.G., in Comprehensive Treatise of Electrochemistry, Yeager, E. and Bockris, J.O., Conway, B.E., Sarangapani, S.N.Y., Eds., London: Plenum Press, 1983, vol. 6, p. 356.

    Google Scholar 

  3. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Zhang, J., Ed., Springer-Verlag London Limited, 2008.

  4. Malek, K., Eikerling, M., Wang, Q., Navessiu, T., and Liu, Z., J. Phys. Chem. C, 2007, vol. 111, p. 13627.

    Article  CAS  Google Scholar 

  5. Izvekov, S. and Violi, A., J. Chem. Theory Comput., 2006, vol. 2, p. 504.

    Article  CAS  Google Scholar 

  6. Kwiecien, M.J., Macdonald, I.F., and Dullien, F.A.L., J. Microsc., 1990, vol. 159, p. 343.

    Article  Google Scholar 

  7. Lymberopoulos, D.P. and Payatakes, A.C., J. Colloid Interface Sci., 1992, vol. 150, p. 61.

    Article  CAS  Google Scholar 

  8. Spanne, P., Thovert, J.F., Jacquin, J.C., Lindquist, W.B., Jones, K.W., and Adler, P.M., Phys. Rev. Lett., 1994, vol. 73, p. 2001.

    Article  CAS  Google Scholar 

  9. Baldwin, C.A., Sederman, A.J., Mantle, M.D., Alexander, P., and Gladden, L.F., J. Colloid Interface Sci., 1996, vol. 181, p. 79.

    Article  CAS  Google Scholar 

  10. Xie, J., Wood, I.D.L., Wayne, D.M., Zawodzinski, T.A., Atanassov, P., and Borup, R.L., J. Electrochem. Soc., 2005, vol. 152, p. A104.

    Article  CAS  Google Scholar 

  11. Mukherjee, P.P. and Wang, C.Y., J. Electrochem. Soc., 2006, vol. 153, p. A840.

    Article  CAS  Google Scholar 

  12. Rong, F., Huang, C., Liu, Z.-S., Song, D., and Wang, Q., J. Power Sources, 2008, vol. 175, p. 699.

    Article  CAS  Google Scholar 

  13. Rong, F., Huang, C., Liu, Z.-S., Song, D., and Wang, Q., J. Power Sources, 2008, vol. 175, p. 712.

    Article  CAS  Google Scholar 

  14. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2001.

    Google Scholar 

  15. Chirkov, Yu.G., Russ. J. Electrochem., 1999, vol. 35, p. 1281.

    CAS  Google Scholar 

  16. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Russ. J. Electrochem., 2011, vol. 47, p. 71.

    Article  CAS  Google Scholar 

  17. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2002, vol. 38, p. 1299.

    Article  CAS  Google Scholar 

  18. Xie, Z., Navessin, T., Shi, K., Chow, R., Wang, Q., Song, D., Andreaus, B., Eikerling, M., Liu, Z., and Holdcroft, S., J. Electrochem. Soc., 2005, vol. 152, p. A1171.

    Article  CAS  Google Scholar 

  19. Kirkpatrick, S., Rev. Mod. Phys., 1973, vol. 45, p. 574.

    Article  Google Scholar 

  20. Stauffer, D., Phys. Reports, 1979, vol. 54, p. 1.

    Article  Google Scholar 

  21. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2010, vol. 46, p. 501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 11, pp. 1192–1204.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Active layer of fuel cell electrode with polymer electrolyte: Nature of proton and oxygen supply channels. Russ J Electrochem 48, 1086–1096 (2012). https://doi.org/10.1134/S1023193512110031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512110031

Keywords

Navigation