Skip to main content
Log in

Statistical atomic-topographic model of the active dissolution of metals with point lattice defects. The effect of point defects (vacancies and impurity atoms) on the metal dissolution rate

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A physicochemical model is put forward for the dissolution (corrosion) of a metal with point lattice defects, i.e., vacancies and impurity atoms with corrosion stability radically different from that of the base metal. The model takes into account the substantial difference in the dissolution rates of the base metal atoms from positions with different numbers of neighboring atoms, which leads to the formation of characteristic nanofragments of the atomic surface relief. These fragments determine the dissolution rate. The point defects substantially affect the dissolution rate of the base metal exclusively due to their active involvement in the formation of the atomic relief. The equations describing this model allow the polarization curves of active dissolution of the base metal to be calculated as a function of the defect concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, Yu.V., Alekseev, G.Yu., and Alekseev, I.Yu., Protection of Metals, 2007, vol. 43, no. 5, p. 436.

    Article  CAS  Google Scholar 

  2. Alekseev, Yu.V., Alekseev, G.Yu., and Bityurin, V.A., Russ. J. Electrochem., 2010, vol. 46, no. 10, p. 1141.

    Article  CAS  Google Scholar 

  3. Alekseev, Yu.V., Alekseev, G.Yu., and Bityurin, V.A., Protection of Metals, 2002, vol. 38, no. 6, p. 517.

    Article  CAS  Google Scholar 

  4. Alekseev, G.Yu., Alekseev, Yu.V., and Bityurin, V.A., Protection of Metals, 2003, vol. 39, no. 6, p. 521.

    Article  CAS  Google Scholar 

  5. Alekseev, Yu.V., Alekseev, G.Yu., and Bityurin, V.A., Protection of Metals, 2007, vol. 43, no. 3, p. 224.

    Article  CAS  Google Scholar 

  6. Alekseev, Yu.V., Problemy Protivokorrozionnoi Zashchity, 2011, no. 1, p. 59.

  7. Plaskeev, A.V., Protection of Metals, 2005, vol. 41, no. 2, p. 131.

    Article  CAS  Google Scholar 

  8. Alekseev, Yu.V., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 10, p. 1699.

    Article  CAS  Google Scholar 

  9. Alekseev, G.Yu., Alekseev, Yu.V., and Bityurin, V.A., Protection of Metals, 2005, vol. 41, no. 3, p. 221.

    Article  CAS  Google Scholar 

  10. Gibbs, J.W., Thermodynamische Studien, Leipzig, 1892.

  11. Kossel, W., Nachr. Ges. Wiss. Gottingen. Math.-Physik K1, 1927, vol. 135, p. 74.

    Google Scholar 

  12. Stranskii, I.N. and Kaishev, R., Usp. Fiz. Nauk, 1939, vol. 21, no. 4, p. 408.

    Google Scholar 

  13. Volmer, M., Kinetika Obrazovaniya Novoi Fazy (Kinetics of New Phase Development), Moscow: Nauka, 1983.

    Google Scholar 

  14. Frenkel’, Ya.I., Zh. Eksp. Teor. Fiz., 1946, vol. 16, p. 39.

    Google Scholar 

  15. Landau, L.D., in Sbornik, posvyashchennyi semidesyatiletiyu akad. A.F. Ioffe (Collection of Papers Dedicated to the 70th Jubilee of Academician A.F. Ioffe), Moscow: AN SSSR, 1950, p. 44.

    Google Scholar 

  16. Glasstone, S., Laidler, K., and Eyring, H., The Theory of Rate Processes, New York: McGraw-Hill, 1941.

    Google Scholar 

  17. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2001.

    Google Scholar 

  18. Alekseev, Yu.V., Alekseev, G.Yu., Bityurin, V.A., and Plaskeev, A.V., Protection of Metals, 2006, vol. 42, no. 6, p. 526.

    Article  CAS  Google Scholar 

  19. Alekseev, Yu.V., Protection of Metals, 2006, vol. 42, no. 4, p. 307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Alekseev.

Additional information

Original Russian Text © Yu.V. Alekseev, G.Yu. Alekseev, V.A. Bityurin, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 1, pp. 48–63.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, Y.V., Alekseev, G.Y. & Bityurin, V.A. Statistical atomic-topographic model of the active dissolution of metals with point lattice defects. The effect of point defects (vacancies and impurity atoms) on the metal dissolution rate. Russ J Electrochem 48, 42–56 (2012). https://doi.org/10.1134/S1023193512010028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512010028

Keywords

Navigation