Skip to main content
Log in

Electrotransport properties and morphology of MF-4SK membranes after surface modification with polyaniline

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The method of template synthesis is used for the surface modification of MF-4SK membranes with polyaniline. The influence of the time of polyaniline synthesis in the surface layer of a perfluorinated MF-4SK membrane on its morphology and electrotransport properties is investigated. It is established that under the synthesis conditions, a gradient distribution of polyaniline develops across the thickness of the membrane, and as a result of this, an anisotropic composite structure is formed. It is shown that the specific electrical conductivity and the electroosmotic and diffusion permeability exhibit an extremal character as functions of the time of polyaniline synthesis. When the orientation of these composite membranes is changed with respect to electrolyte flow, an asymmetry effect in their diffusion characteristics is found. With the application of the bilayer fine porous membrane model, the modified-layer thickness is estimated, and the determining influence of the difference in absolute values of effective fixed-charge volume densities on the development of the asymmetry effect is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarasevich, M.R., Orlov, S.B., Shkol’nikov, E.I., et al., Ed., Elektrokhimiya polimerov (Electrochemistry of Polymers), Moscow: Nauka, 1990.

    Google Scholar 

  2. Strathmann, H., Preface in Ion-Exchange Membrane Separation Process, vol. 9 of Membrane Science and Technology Series, Amsterdam: Elsevier, 2004.

    Google Scholar 

  3. Sata, T., Ion-Exchange Membranes, Cambridge: Royal Society of Chemistry, 2004.

    Google Scholar 

  4. Pud, A., Ogurtsov, N., Korzhenko, A., and Shapoval, G., Prog. Polym. Sci., 2003, vol. 28, p. 1701.

    Article  CAS  Google Scholar 

  5. Vorotyntsev, M.A., and Vasilyeva, S.V., Adv. Colloid Interface Sci., 2008, vol. 139, p. 97.

    Article  CAS  Google Scholar 

  6. Berezina, N.P., Kubaisi, A.A.-R., Alpatova, N.M., Andreev, V.N., and Griga, E.I., Elektrokhimiya, 2004, vol. 40, p. 325 [Russ. J. Electrochem. (Engl. Transl.), 2004, vol. 40, pp. 286–293].

    Google Scholar 

  7. Berezina, N.P., and Kubaisi, A.A.-R., Elektrokhimiya, 2006, vol. 42, p. 91 [Russ. J. Electrochem. (Engl. Transl.), 2006, vol. 42, pp. 81–88].

    Google Scholar 

  8. Berezina, N.P., Kubaisy, A.A.-R., Timofeev, S.V., and Karpenko, L.V., J. Solid State Electrochem., 2007, vol. 11, p. 378.

    Article  CAS  Google Scholar 

  9. Berezina, N.P., Kononenko, N.A., Sytcheva, A.A.-R., Loza, N.V., Shkirskaya, S.A., Hegman, N., and Pungor, A., Electrochim. Acta, 2009, vol. 54, p. 2342.

    Article  CAS  Google Scholar 

  10. Berezina, N.P., Shkirskaya, S.A., Sycheva, A.A.-R., and Krishtopa, M.V., Kolloid. zh., 2008, vol. 70, p. 437 [Colloid J. (Engl. Transl.), 2008, vol. 70, pp. 397–406].

    Google Scholar 

  11. Krivandin, A.V., Solov’eva, A.B., Glagol’ev, N.N., Shatalova, O.V., Kotova, S.L., and Belyaev, V.E., Membrany, 2003, No. 17, p. 16.

  12. Tan, S., and Bélanger, D., J. Phys. Chem. B, 2005, vol. 109, p. 23480.

    Article  CAS  Google Scholar 

  13. Gnusin, N.P., Berezina, N.P., Demina, O.A., and Kononenko, N.A., Elektrokhimiya, 1996, vol. 32, p. 173 [Russ. J. Electrochem. (Engl. Transl.), 1996, vol. 32, pp. 154–163].

    Google Scholar 

  14. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Adv. Colloid Interface Sci., 2008, vol. 139, p. 3.

    Article  CAS  Google Scholar 

  15. Shkirskaya, S.A., Berezina, N.P., Sytcheva, A.A.-R., Ponomarev, A.N., Abdrashitov, E.F., and Krishtopa, M.V., Abstracts of Papers, “Ion Transport in Organic and Inorganic Membranes,” Krasnodar, Russia, p. 184.

  16. Ivanov, V.F., Gribkova, O.L., Novikov, S.V., Nekrasov, A.A., Isakova, A.A., Vannikov, A.V., Meshkov, G.B., and Yaminsky, I.V., Synth. Met., 2005, vol. 152, p. 153.

    Article  CAS  Google Scholar 

  17. Shkirskaya, S.A., Cand. Sci. (Chem.) Dissertation, Krasnodar: Kuban State Univ., 2008.

    Google Scholar 

  18. Gorskii, V.G., Starov, V.M., Filippov, A.N., Bryk, M.T., and Nigmatullin, R.R., Khim. Tekhnol. Vody, 1992, vol. 14, p. 93.

    CAS  Google Scholar 

  19. Ivanova, S.M., Starov, V.M., and Lyalin, V.A., Khim. Tekhnol. Vody, 1989, vol. 11, p. 483.

    CAS  Google Scholar 

  20. Filippov, A.N., Starov, V.M., Kononenko, N.A., and Berezina, N.P., Adv. Colloid Interface Sci., 2008, vol. 139, p. 29.

    Article  CAS  Google Scholar 

  21. Moelwyn-Hughes, E.A., Physical Chemistry, 2nd rev. ed., New York: Pergamon Press, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Berezina.

Additional information

Original Russian Text © N.P. Berezina, N.A. Kononenko, A.N. Filippov, S.A. Shkirskaya, I.V. Falina, A.A.-R. Sycheva, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 5, pp. 515–524.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezina, N.P., Kononenko, N.A., Filippov, A.N. et al. Electrotransport properties and morphology of MF-4SK membranes after surface modification with polyaniline. Russ J Electrochem 46, 485–493 (2010). https://doi.org/10.1134/S1023193510050010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510050010

Key words

Navigation