Skip to main content
Log in

Recent Advances in the Theory and Application of Nanofiltration: a Review

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti3C2TX, graphene oxide, SiO2, and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table 6
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

ATN:

Atenolol

BNNS:

Boron nitride nanosheets

BNNTs:

Boron nitride nanotubes

BSA:

Bovine serum albumin

CA:

Cellulose acetate

CECP:

Cake-enhanced concentration polarization

CNTs:

Carbon nanotubes

CuAAC:

Copper-catalyzed azide-alkyne cycloaddition

Da:

Daltons

DAB:

3,3 '-Diaminobenzidine

DE:

Dielectric exclusion

dGO:

Deoxygenated GO

DMF:

Dimethylformamide

DSPM:

Donnan-steric-pore model

DSPM-DE:

Donnan-steric-pore model with dielectric exclusion

DWCNTs:

Double-walled carbon nanotubes

ED:

Ethylenediamine

EDC:

Endocrine-disrupting compounds

EMP:

Emerging micropollutants

FTIR:

Fourier transform infrared spectroscopy

GO:

Graphene oxide

GOS:

Galacto-oligosacchares

GNM:

Graphene nano-mesh

HEV:

Hepatitis E virus

HFPO-DA:

Hexafluoropropylene oxide dimer acid

HT:

Hydrotalcite

LBL:

Layer by layer

MF:

Microfiltration

MMMs:

Mixed matrix membranes

MOF:

Metal organic framework

MPD:

Phenylenediamine

MWCNTs:

Multiwalled carbon nanotubes

MWCO:

Molecular weight cutoff

NbN:

Niobate nanosheet

NF:

Nanofiltration

NIPS:

Nonsolvent induced phase separation

NOM:

Natural organic matter

ODA:

Octadecylamine

OSN:

Organic solvent nanofiltration

PA:

Polyamide

PANI:

Polyaniline

PBI:

Polybenzimidazole

PC:

Polycarbonate

PDA:

Polydopamine

PE:

Polyethylene

PEI:

Polyetherimide

PEM:

Polyelectrolyte multilayers

PES:

Polyethersulfone

PEs:

Polyelectrolytes

PhACs:

Pharmaceuticals

PIP:

Piperazine

PPCP:

Personal care products

PSF:

Polysulfone

PVDF:

Polyvinylidene fluoride

PVP:

Polyvinylpyrrolidone

rGO:

Reduced graphene oxide

RO:

Reverse osmosis

SA:

Sodium alginate

S-DADPS:

Disodium-3–30-disulfone-4–40-dichlorodiphenylsulfone

SDGs:

Sustainable development goals

SHP:

Steric hindrance pore

SiNPs:

SiO2 Nanoparticles

SWCNTs:

Single-walled carbon nanotubes

TA:

Tannic acid

TFC:

Thin film composite

TIPS:

Thermally induced phase separation

TMC:

Trimethyl chloride

TOC:

Total organic carbon

TSS:

Total suspended solids

UF:

Ultrafiltration

VSEP:

Vibratory shear enhanced processing

ZCP:

Zwitterionic copolymer

2D:

Two-dimensional

References

  1. Hou C, Wen Y, Liu X, Dong M. Impacts of regional water shortage information disclosure on public acceptance of recycled water—evidences from China’s urban residents. J Clean Prod. 2021;278:123965.

  2. Gil A, Galeano LA, Vicente MÃ. Applications of advanced oxidation processes (AOPs) in drinking water treatment. 1st ed. Cham: Springer International Publishing; 2019.

    Google Scholar 

  3. Pathak V, Ambrose RPK. Starch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortage. J Appl Polym Sci. 2020;137(14):48523.

    CAS  Google Scholar 

  4. Mall NK, Herman JD. Water shortage risks from perennial crop expansion in California's Central Valley. Environ Res Lett. 2019;14(10):104014.

  5. Mulder M. Basic principles of membrane technology. 2nd ed. Dordrecht: Springer, Netherlands; 1996.

    Google Scholar 

  6. Jye LW, Ismail AF. Nanofiltration membranes: synthesis, characterization, and applications. Boca Raton: CRC Press Taylor & Francis Group; 2017.

    Google Scholar 

  7. Shin MG, Kwon SJ, Park H, Park Y-I, Lee J-H. High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes. J Membr Sci. 2020;595:117590.

  8. Kamcev J, Freeman BD. Nanofiltration membranes. In: Kobayashi S, Müllen K, editors. Encyclopedia of polymeric nanomaterials. Berlin: Springer, Berlin Heidelberg; 2014. p. 1–9. https://doi.org/10.1007/978-3-642-36199-9_160-1.

    Chapter  Google Scholar 

  9. Peydayesh M, Mohammadi T, Nikouzad SK. A positively charged composite loose nanofiltration membrane for water purification from heavy metals. J Membr Sci. 2020;611:118205.

  10. Abdullah N, Yusof N, Ismail AF, Lau WJ. Insights into metal-organic frameworks-integrated membranes for desalination process: a review. Desalination. 2021;500:114867.

  11. Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers. 2019;11(8):1252.

    CAS  Google Scholar 

  12. Konca K, Çulfaz-Emecen PZ. Effect of carboxylic acid crosslinking of cellulose membranes on nanofiltration performance in ethanol and dimethylsulfoxide. J Membr Sci. 2019;587:117175.

  13. Pandey RP, Rasheed PA, Gomez T, Azam RS, Mahmoud KA. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. J Membr Sci. 2020;607:118139.

  14. Nguyen Thi HY, Nguyen BTD, Kim JF. Sustainable fabrication of organic solvent nanofiltration membranes. Membranes. 2020;11(1):19.

    Google Scholar 

  15. Wang H, Jung JT, Kim JF, Kim S, Drioli E, Lee YM. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J Membr Sci. 2019;574:44–54.

    Google Scholar 

  16. Qiu Z, Ji X, He C. Fabrication of a loose nanofiltration candidate from polyacrylonitrile/graphene oxide hybrid membrane via thermally induced phase separation. J Hazard Mater. 2018;360:122–31.

    CAS  Google Scholar 

  17. Aburabie J, Emwas AH, Peinemann KV. Silane-crosslinked asymmetric polythiosemicarbazide membranes for organic solvent nanofiltration. Macromol Mater Eng. 2019;304(1):1800551.

    Google Scholar 

  18. Turken T, Sengur-Tasdemir R, Sayinli B, Urper-Bayram GM, Ates-Genceli E, Tarabara VV, Koyuncu I. Reinforced thin-film composite nanofiltration membranes: fabrication, characterization, and performance testing. J Appl Polym Sci. 2019;136(39):48001.

    Google Scholar 

  19. Guo D, Xiao Y, Li T, Zhou Q, Shen L, Li R, Xu Y, Lin H. Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly. J Colloid Interface Sci. 2020;560:273–83.

    CAS  Google Scholar 

  20. Agarwal P, Hefner RE, Ge S, Tomlinson I, Rao Y, Dikic T. Nanofiltration membranes from crosslinked Troger's base polymers of intrinsic microporosity (PIMs). J Membr Sci. 2020;595:117501.

  21. DuChanois RM, Epsztein R, Trivedi JA, Elimelech M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. J Membr Sci. 2019;581:413–20.

    CAS  Google Scholar 

  22. Elshof MG, de Vos WM, de Grooth J, Benes NE. On the long-term pH stability of polyelectrolyte multilayer nanofiltration membranes. J Membr Sci. 2020;615:118532.

  23. Kyriakou N, Merlet RB, Willott JD, Nijmeijer A, Winnubst L, Pizzoccaro-Zilamy M-A. New method toward a robust covalently attached cross-linked nanofiltration membrane. ACS Appl Mater Interfaces. 2020;12(42):47948–56.

    CAS  Google Scholar 

  24. Duong PHH, Daumann K, Hong P-Y, Ulbricht M, Nunes SP. Interfacial polymerization of zwitterionic building blocks for high-flux nanofiltration membranes. Langmuir. 2019;35(5):1284–93.

    CAS  Google Scholar 

  25. Gunawan FM, Mangindaan D, Khoiruddin K, Wenten IG. Nanofiltration membrane cross-linked by m-phenylenediamine for dye removal from textile wastewater. Polym Adv Technol. 2019;30(2):360–7.

    CAS  Google Scholar 

  26. Ormanci-Acar T, Tas CE, Keskin B, Ozbulut EBS, Turken T, Imer D, Tufekci N, Menceloglu YZ, Unal S, Koyuncu I. Thin-film composite nanofiltration membranes with high flux and dye rejection fabricated from disulfonated diamine monomer. J Membr Sci. 2020;608:118172.

  27. Das SK, Manchanda P, Peinemann K-V. Solvent-resistant triazine-piperazine linked porous covalent organic polymer thin-film nanofiltration membrane. Sep Purif Technol. 2019;213:348–58.

    CAS  Google Scholar 

  28. Zhao Y, Zhang Z, Dai L, Zhang S. Preparation of a highly permeable nanofiltration membrane using a novel acyl chloride monomer with -PO(Cl)2 group. Desalination. 2018;431:56–65.

    CAS  Google Scholar 

  29. Shi M, Yan W, Dong C, Liu L, Xie S, Gao C. Solvent activation before heat-treatment for improving reverse osmosis membrane performance. J Membr Sci. 2020;595:117565.

  30. Hoffman JR, Phillip WA. Dual-functional nanofiltration membranes exhibit multifaceted ion rejection and antifouling performance. ACS Appl Mater Interfaces. 2020;12(17):19944–54.

    CAS  Google Scholar 

  31. Dipaola M, Wodajo FM. 3D printing in orthopaedic surgery. St Louis: Elsevier; 2019.

    Google Scholar 

  32. Park S, Jeong YD, Lee JH, Kim J, Jeong K, Cho KH. 3D printed honeycomb-shaped feed channel spacer for membrane fouling mitigation in nanofiltration. J Membr Sci. 2021;620:118665.

  33. Ang MBMY, Pereira JM, Trilles CA, Aquino RR, Huang S-H, Lee K-R, Lai J-Y. Performance and antifouling behavior of thin-film nanocomposite nanofiltration membranes with embedded silica spheres. Sep Purif Technol. 2019;210:521–9.

    CAS  Google Scholar 

  34. Morales-Cuevas JB, Pérez-Sicairos S, Lin SW, Salazar-Gastélum MI. Evaluation of a modified spray-applied interfacial polymerization method for preparation of nanofiltration membranes. J Appl Polym Sci. 2019;136(42):48129.

    Google Scholar 

  35. Polisetti V, Ray P. Thin film composite nanofiltration membranes with polystyrene sodium sulfonate–polypiperazinetrimesamide semi-interpenetrating polymer network active layer. J Appl Polym Sci. 2020;137(44):49351.

    CAS  Google Scholar 

  36. Ji Y-L, Ang MBMY, Huang S-H, Lu J-Y, Tsai S-J, De Guzman MR, Tsai H-A, Hu C-C, Lee K-R, Lai J-Y. Performance evaluation of nanofiltration polyamide membranes based from 3,3′-diaminobenzidine. Sep Purif Technol. 2019;211:170–8.

    CAS  Google Scholar 

  37. Asadi Tashvigh A, Chung T-S. Robust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration. J Membr Sci. 2019;572:580–7.

    CAS  Google Scholar 

  38. Davood Abadi Farahani MH, Chung T-S. A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN). Sep Purif Technol. 2019;209:182–92.

  39. Agboola O, Fayomi OSI, Sadiku R, Popoola P, Alaba PA, Adegbola AT. Polymers blends for the improvement of nanofiltration membranes in wastewater treatment: a short review. Mater Today Proc. 2021;43:3365–8.

    CAS  Google Scholar 

  40. Ang MBMY, Tang C-L, De Guzman MR, Maganto HLC, Caparanga AR, Huang S-H, Tsai H-A, Hu C-C, Lee K-R, Lai J-Y. Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment. Desalination. 2020;481:114352.

  41. Mahdavi H, Mazinani N, Heidari AA. Poly(vinylidene fluoride) (PVDF)/PVDF-g-polyvinylpyrrolidone (PVP)/TiO2 mixed matrix nanofiltration membranes: preparation and characterization. Polym Int. 2020;69(12):1187–95.

    CAS  Google Scholar 

  42. Van Goethem C, Mertens M, Vankelecom IFJ. Crosslinked PVDF membranes for aqueous and extreme pH nanofiltration. J Membr Sci. 2019;572:489–95.

    Google Scholar 

  43. Van Goethem C, Magboo MM, Mertens M, Thijs M, Koeckelberghs G, Vankelecom IFJ. A scalable crosslinking method for PVDF-based nanofiltration membranes for use under extreme pH conditions. J Membr Sci. 2020;611:118274.

  44. Aburabie JH, Puspasari T, Peinemann K-V. Alginate-based membranes: paving the way for green organic solvent nanofiltration. J Membr Sci. 2020;596:117615.

  45. Tham HM, Chung T-S. One-step cross-linking and tannic acid modification of polyacrylonitrile hollow fibers for organic solvent nanofiltration. J Membr Sci. 2020;610:118294.

  46. Zhao Y, Tong T, Wang X, Lin S, Reid EM, Chen Y. Differentiating solutes with precise nanofiltration for next generation environmental separations: a review. Environ Sci Technol. 2021;55(3):1359–76.

    CAS  Google Scholar 

  47. Hosseini SM, Afshari M, Fazlali AR, Koudzari Farahani S, Bandehali S, Van der Bruggen B, Bagheripour E. Mixed matrix PES-based nanofiltration membrane decorated by (Fe3O4–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristics. Chem Eng Res Des. 2019;147:390–8.

    CAS  Google Scholar 

  48. Echaide-Górriz C, Zapata JA, Etxeberría-Benavides M, Téllez C, Coronas J. Polyamide/MOF bilayered thin film composite hollow fiber membranes with tuned MOF thickness for water nanofiltration. Sep Purif Technol. 2020;236:116265.

  49. Xiao Y, Zhang W, Jiao Y, Xu Y, Lin H. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. J Membr Sci. 2021;624:119101.

  50. Low Z-X, Ji J, Blumenstock D, Chew Y-M, Wolverson D, Mattia D. Fouling resistant 2D boron nitride nanosheet – PES nanofiltration membranes. J Membr Sci. 2018;563:949–56.

    CAS  Google Scholar 

  51. Casanova S, Liu T-Y, Chew Y-MJ, Livingston A, Mattia D. High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration. J Membr Sci. 2020;597:117749.

  52. Paseta L, Luque-Alled JM, Malankowska M, Navarro M, Gorgojo P, Coronas J, Téllez C. Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol. 2020;247:116995.

  53. Kunimatsu M, Nakagawa K, Yoshioka T, Shintani T, Yasui T, Kamio E, Tsang SCE, Li J, Matsuyama H. Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. J Membr Sci. 2020;595:117598.

  54. Abadikhah H, Kalali EN, Behzadi S, Khan SA, Xu X, Shabestari ME, Agathopoulos S. High flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltration. Chem Eng Sci. 2019;204:99–109.

    CAS  Google Scholar 

  55. Kim JH, Choi Y, Kang J, Choi E, Choi SE, Kwon O, Kim DW. Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating. J Membr Sci. 2020;612:118454.

  56. Mahalingam DK, Wang S, Nunes SP. Stable graphene oxide cross-linked membranes for organic solvent nanofiltration. Ind Eng Chem Res. 2019;58(51):23106–13.

    CAS  Google Scholar 

  57. Cho KM, Lee H-J, Nam YT, Kim Y-J, Kim C, Kang KM, Ruiz Torres CA, Kim DW, Jung H-T. Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons. ACS Appl Mater Interfaces. 2019;11(30):27004–10.

    CAS  Google Scholar 

  58. Mahalingam DK, Falca G, Upadhya L, Abou-Hamad E, Batra N, Wang S, Musteata V, da Costa PM, Nunes SP. Spray-coated graphene oxide hollow fibers for nanofiltration. J Membr Sci. 2020;606:118006.

  59. Nam YT, Kim SJ, Kang KM, Jung W-B, Kim DW, Jung H-T. Enhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supports. Carbon. 2019;148:370–7.

    CAS  Google Scholar 

  60. Alhumaidi MS, Arshad F, Aubry C, Ravaux F, McElhinney J, Hasan A, Zou L. Electrostatically coupled SiO2 nanoparticles/poly (L-DOPA) antifouling coating on a nanofiltration membrane. Nanotechnology. 2020;31(27):275602.

  61. Ang MBMY, Trilles CA, De Guzman MR, Pereira JM, Aquino RR, Huang S-H, Hu C-C, Lee K-R, Lai J-Y. Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles. Sep Purif Technol. 2019;224:113–20.

    CAS  Google Scholar 

  62. Malakian A, Husson SM. Understanding the roles of patterning and foulant chemistry on nanofiltration threshold flux. J Membr Sci. 2020;597:117746.

  63. Priyadarshini A, Tay SW, Ng S, Hong L. Skinned carbonaceous composite membrane with pore channels bearing an anchored surfactant layer for nanofiltration. J Membr Sci. 2020;599:117714.

  64. Ashraf MA, Wang J, Wu B, Cui P, Xu B, Li X. Enhancement in Li+/Mg2+ separation from salt lake brine with PDA–PEI composite nanofiltration membrane. J Appl Polym Sci. 2020;137(47):49549.

    CAS  Google Scholar 

  65. Bahamonde Soria R, Zhu J, Gonza I, Van der Bruggen B, Luis P. Effect of (TiO2: ZnO) ratio on the anti-fouling properties of bio-inspired nanofiltration membranes. Sep Purif Technol. 2020;251:117280.

  66. Kamari S, Shahbazi A. Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long–term operation and reusability tests. Chemosphere (Oxford). 2020;243:125282.

  67. Lakhotia SR, Mukhopadhyay M, Kumari P. Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatment. Sep Purif Technol. 2019;211:98–107.

    CAS  Google Scholar 

  68. Poolachira S, Velmurugan S. Exfoliated hydrotalcite–modified polyethersulfone-based nanofiltration membranes for removal of lead from aqueous solutions. Environ Sci Pollut Res Int. 2020;27(24):29725–36.

    CAS  Google Scholar 

  69. Beisl S, Monteiro S, Santos R, Figueiredo AS, Sánchez-Loredo MG, Lemos MA, Lemos F, Minhalma M, de Pinho MN. Synthesis and bactericide activity of nanofiltration composite membranes – cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolites. Water Res. 2019;149:225–31.

    CAS  Google Scholar 

  70. Nidhi Maalige R, Aruchamy K, Mahto A, Sharma V, Deepika D, Mondal D, Nataraj SK. Low operating pressure nanofiltration membrane with functionalized natural nanoclay as antifouling and flux promoting agent. Chem Eng J. 2019;358:821–30.

    CAS  Google Scholar 

  71. Averina YM, Kurbatov AY, Sakharov DA, Subcheva EN. Development of nanofiltration ceramic membrane production technology. Glass Ceram. 2020;77(3–4):98–102.

    CAS  Google Scholar 

  72. Anisah S, Kanezashi M, Nagasawa H, Tsuru T. Al2O3 nanofiltration membranes fabricated from nanofiber sols: preparation, characterization, and performance. J Membr Sci. 2020;611:118401.

  73. Amirilargani M, Yokota GN, Vermeij GH, Merlet RB, Delen G, Mandemaker LDB, Weckhuysen BM, Winnubst L, Nijmeijer A, de Smet LCPM, Sudhölter EJR. Melamine-based microporous organic framework thin films on an alumina membrane for high-flux organic solvent nanofiltration. Chemsuschem. 2020;13(1):136–40.

    CAS  Google Scholar 

  74. Anisah S, Kanezashi M, Nagasawa H. Tsuru T. Hydrothermal stability and permeation properties of TiO2-ZrO2 (5/5) nanofiltration membranes at high temperatures. Sep Purif Technol. 2019;212:1001–12.

  75. Sada Y, Yoshioka T, Nakagawa K, Shintani T, Iesako R, Kamio E, Matsuyama H. Preparation and characterization of organic chelate ligand (OCL)-templated TiO2–ZrO2 nanofiltration membranes. J Membr Sci. 2019;591:117304.

  76. Qin H, Guo W, Huang X, Gao P, Xiao H. Preparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatment. J Eur Ceram Soc. 2020;40(1):145–54.

    CAS  Google Scholar 

  77. Chau J, Singh D, Sirkar KK. 110th anniversary: liquid separation membranes based on nanowire substrates for organic solvent nanofiltration and membrane distillation. Ind Eng Chem Res. 2019;58(31):14350–6.

    CAS  Google Scholar 

  78. Vatanpour V, Esmaeili M, Safarpour M, Ghadimi A, Adabi J. Synergistic effect of carboxylated-MWCNTs on the performance of acrylic acid UV-grafted polyamide nanofiltration membranes. React Funct Polym. 2019;134:74–84.

    CAS  Google Scholar 

  79. Manorma, Ferreira I, Alves P, Gil MH, Gando-Ferreira LM. Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Sep Purif Technol. 2021;260:118231.

  80. Zhang H, Quan X, Fan X, Yi G, Chen S, Yu H, Chen Y. Improving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge density. Environ Sci Technol. 2019;53(2):868–77.

    CAS  Google Scholar 

  81. Yang Y, Yang X, Liang L, Gao Y, Cheng H, Li X, Zou M, Ma R, Yuan Q, Duan X. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science. 2019;364(6445):1057–62.

    CAS  Google Scholar 

  82. Park MJ, Wang C, Seo DH, Gonzales RR, Matsuyama H, Shon HK. Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane. J Membr Sci. 2021;620:118901.

  83. Rahimi Z, Zinatizadeh AA, Zinadini S, van Loosdrecht MCM. β-cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes. Sep Purif Technol. 2020;247:116979.

  84. Misdan N, Ramlee N, Hairom NHH, Ikhsan SNW, Yusof N, Lau WJ, Ismail AF, Nordin NAHM. CuBTC metal organic framework incorporation for enhancing separation and antifouling properties of nanofiltration membrane. Chem Eng Res Des. 2019;148:227–39.

    CAS  Google Scholar 

  85. Izadmehr N, Mansourpanah Y, Ulbricht M, Rahimpour A, Omidkhah MR. TETA-anchored graphene oxide enhanced polyamide thin film nanofiltration membrane for water purification performance and antifouling properties. J Environ Manag. 2020;276:111299.

  86. Hoang MT, Pham TD, Verheyen D, Nguyen MK, Pham TT, Zhu J, Van der Bruggen B. Fabrication of thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals for removal of Cu(II) and Pb(II). Chem Eng Sci. 2020;228:115998.

  87. Mehrjo F, Pourkhabbaz A, Shahbazi A. PMO synthesized and functionalized by p-phenylenediamine as new nanofiller in PES-nanofiltration membrane matrix for efficient treatment of organic dye heavy metal and salts from wastewater. Chemosphere. 2021;263:128088.

  88. Bagheripour E, Moghadassi AR, Parvizian F, Hosseini SM, Van der Bruggen B. Tailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layer. Chem Eng Res Des. 2019;144:418–28.

    CAS  Google Scholar 

  89. Parvizian F, Ansari F, Bandehali S. Oleic acid-functionalized TiO2 nanoparticles for fabrication of PES-based nanofiltration membranes. Chem Eng Res Des. 2020;156:433–41.

    CAS  Google Scholar 

  90. Emonds S, Roth H, Wessling M. Chemistry in a spinneret – formation of hollow fiber membranes with a cross-linked polyelectrolyte separation layer. J Membr Sci. 2020;612:118325.

  91. Yonge DT, Biscardi PG, Duranceau SJ. Modeling ionic strength effects on hollow-fiber nanofiltration membrane mass transfer. Membranes. 2018;8(3):37.

    Google Scholar 

  92. Park SH, Kim JH, Moon SJ, Jung JT, Wang HH, Ali A, Quist-Jensen CA, Macedonio F, Drioli E, Lee YM. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J Membr Sci. 2020;598:117683.

  93. Zhang Y, Wang L, Sun W, Hu Y, Tang H. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review. J Ind Eng Chem. 2020;81:7–23.

    CAS  Google Scholar 

  94. Tang M-J, Liu M-L, Wang D-A, Shao D-D, Wang H-J, Cui Z, Cao X-L, Sun S-P. Precisely patterned nanostrand surface of cucurbituril[n]-based nanofiltration membranes for effective alcohol–water condensation. Nano Lett. 2020;20(4):2717–23.

    CAS  Google Scholar 

  95. Urper-Bayram GM, Sayinli B, Sengur-Tasdemir R, Turken T, Pekgenc E, Gunes O, Ates-Genceli E, Tarabara VV, Koyuncu I. Nanocomposite hollow fiber nanofiltration membranes: fabrication, characterization, and pilot-scale evaluation for surface water treatment. J Appl Polym Sci. 2019;136(45):48205.

    Google Scholar 

  96. Árki P, Hecker C, Tomandl G, Joseph Y. Streaming potential properties of ceramic nanofiltration membranes – importance of surface charge on the ion rejection. Sep Purif Technol. 2019;212:660–9.

    Google Scholar 

  97. Chaudhury S, Wormser E, Harari Y, Edri E, Nir O. Tuning the ion-selectivity of thin-film composite nanofiltration membranes by molecular layer deposition of alucone. ACS Appl Mater Interfaces. 2020;12(47):53356–64.

    CAS  Google Scholar 

  98. Li H, Shi W, Du Q, Zhou R, Zhang H, Qin X. Improved separation and antifouling properties of thin-film composite nanofiltration membrane by the incorporation of cGO. Appl Surf Sci. 2017;407:260–75.

    CAS  Google Scholar 

  99. Heidari A, Abdollahi E, Mohammadi T, Asadi AA. Improving permeability, hydrophilicity and antifouling characteristic of PES hollow fiber UF membrane using carboxylic PES: a promising substrate to fabricate NF layer. Sep Purif Technol. 2021;270:118811.

  100. Muhammad Akhyar F. Nanofiltration. IntechOpen; 2018.

  101. Schäfer A, Andritsos N, Karabelas AJ, Hoek EMV, Schneider R, Nyström M. Fouling in nanofiltration. Edinburgh: Elsevier; 2004.

    Google Scholar 

  102. Mahlangu OT, Mamba BB, Verliefde ARD. Effect of multivalent cations on membrane-foulant and foulant-foulant interactions controlling fouling of nanofiltration membranes. Polym Adv Technol. 2020;31(11):2588–600.

    CAS  Google Scholar 

  103. Kramer FC, Shang R, Rietveld LC, Heijman SJG. Fouling control in ceramic nanofiltration membranes during municipal sewage treatment. Sep Purif Technol. 2020;237:116373.

  104. Jung O, Saravia F, Wagner M, Heißler S, Horn H. Quantifying concentration polarization - Raman microspectroscopy for in-situ measurement in a flat sheet cross-flow nanofiltration membrane unit. Sci Rep. 2019;9(1):15885.

    Google Scholar 

  105. Li Y, Qi B, Wan Y. Separation of monosaccharides from pretreatment inhibitors by nanofiltration in lignocellulosic hydrolysate: fouling mitigation by activated carbon adsorption. Biomass Bioenergy. 2020;136:105527.

  106. Lin D, Tang X, Xing J, Zhao J, Liang H, Li G. Application of peroxymonosulfate-based advanced oxidation process as a novel pretreatment for nanofiltration: comparison with conventional coagulation. Sep Purif Technol. 2019;224:255–64.

    CAS  Google Scholar 

  107. Thombre NV, Gadhekar AP, Patwardhan AV, Gogate PR. Ultrasound induced cleaning of polymeric nanofiltration membranes. Ultrason Sonochem. 2020;62:104891.

  108. Epsztein R, Shaulsky E, Dizge N, Warsinger DM, Elimelech M. Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environ Sci Technol. 2018;52(7):4108–16.

    CAS  Google Scholar 

  109. Wang S, Li L, Yu S, Dong B, Gao N, Wang X. A review of advances in EDCs and PhACs removal by nanofiltration: mechanisms, impact factors and the influence of organic matter. Chem Eng J. 2021;406:126722.

  110. Nair RR, Protasova E, Strand S, Bilstad T. Implementation of Spiegler Kedem and steric hindrance pore models for analyzing nanofiltration membrane performance for smart water production. Membranes. 2018;8(3):78.

    Google Scholar 

  111. Su J, Chung T-S. Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processes. J Membr Sci. 2011;376(1):214–24.

    CAS  Google Scholar 

  112. Rajendran RM, Garg S, Bajpai S. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study. Environ Sci Pollut Res Int. 2021;28(11):13886–99.

    CAS  Google Scholar 

  113. Ghazali NF, Razak NDA. Recovery of saccharides from lignocellulosic hydrolysates using nanofiltration membranes: a review. Food Bioprod Process. 2021;126:215–33.

    CAS  Google Scholar 

  114. Ali MEA, Kotp YH, Bosela R, Samy A, Awad S, Du JR. Enhancing the performance of TFC nanofiltration membranes by adding organic acids in polysulfone support layer. Polym Test. 2020;91:106775.

  115. Sigurdardottir SB, DuChanois RM, Epsztein R, Pinelo M, Elimelech M. Energy barriers to anion transport in polyelectrolyte multilayer nanofiltration membranes: role of intra-pore diffusion. J Membr Sci. 2020;603:117921.

  116. Peeters JMM, Boom JP, Mulder MHV, Strathmann H. Retention measurements of nanofiltration membranes with electrolyte solutions. J Membr Sci. 1998;145(2):199–209.

    CAS  Google Scholar 

  117. Bajpai S, Rajendran RM, Hooda S. Modeling the performance of HPA membrane for sulfate ion removal from ternary ion system. Korean J Chem Eng. 2019;36(10):1648–56.

    CAS  Google Scholar 

  118. Ortiz-Albo P, Ibañez R, Urtiaga A, Ortiz I. Phenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potential. Sep Purif Technol. 2019;210:746–53.

    CAS  Google Scholar 

  119. Kumar VS, Hariharan KS, Mayya KS, Han S. Volume averaged reduced order Donnan steric pore model for nanofiltration membranes. Desalination. 2013;322:21–8.

    CAS  Google Scholar 

  120. Roy Y, Warsinger DM, Lienhard JH. Effect of temperature on ion transport in nanofiltration membranes: diffusion, convection and electromigration. Desalination. 2017;420:241–57.

    CAS  Google Scholar 

  121. Wang R, Lin S. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J Membr Sci. 2021;620:118809.

  122. Cooper J, Ye Y, Razmjou A, Chen V. High-value organic acid recovery from first-generation bioethanol dunder using nanofiltration. Ind Eng Chem Res. 2020;59(26):11940–52.

    CAS  Google Scholar 

  123. Caltran I, Rietveld LC, Shorney-Darby HL, Heijman SGJ. Separating NOM from salts in ion exchange brine with ceramic nanofiltration. Water Res. 2020;179:115894.

  124. Almijbilee MMA, Wu X, Zhou A, Zheng X, Cao X, Li W. Polyetheramide organic solvent nanofiltration membrane prepared via an interfacial assembly and polymerization procedure. Sep Purif Technol. 2020;234116033.

  125. Otero-Fernández A, Díaz P, Otero JA, Ibáñez R, Maroto-Valiente A, Palacio L, Prádanos P, Carmona FJ, Hernández A. Morphological, chemical and electrical characterization of a family of commercial nanofiltration polyvinyl alcohol coated polypiperazineamide membranes. Eur Polym J. 2020;126:109544.

  126. Karimnezhad H, Navarchian AH, Tavakoli Gheinani T, Zinadini S. Incorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling property. React Funct Polym. 2019;135:77–93.

    CAS  Google Scholar 

  127. Álvarez-Quintana S, Carmona FJ, Palacio L, Hernández A, Prádanos P. Water viscosity in confined nanoporous media and flow through nanofiltration membranes. Microporous Mesoporous Mater. 2020;303:110289.

  128. Malhotra M, Pal M, Pal P. A response surface optimized nanofiltration-based system for efficient removal of selenium from drinking water. J Water Process Eng. 2020;33:101007.

  129. Rajendran RM, Garg S, Bajpai S. Economic feasibility of arsenic removal using nanofiltration membrane: a mini review. Chem Pap. 2021;75:4431–44.

    CAS  Google Scholar 

  130. Boussouga Y-A, Frey H, Schäfer AI. Removal of arsenic(V) by nanofiltration: impact of water salinity, pH and organic matter. J Membr Sci. 2021;618:118631.

  131. Figoli A, Fuoco I, Apollaro C, Chabane M, Mancuso R, Gabriele B, Rosa RD, Vespasiano G, Barca D, Criscuoli A. Arsenic-contaminated groundwaters remediation by nanofiltration. Sep Purif Technol. 2020;238:116461.

  132. Bouhadjar SI, Kopp H, Britsch P, Deowan SA, Hoinkis J, Bundschuh J. Solar powered nanofiltration for drinking water production from fluoride-containing groundwater – a pilot study towards developing a sustainable and low-cost treatment plant. J Environ Manag. 2019;231:1263–9.

    CAS  Google Scholar 

  133. Fujioka T, Ngo MTT, Makabe R, Ueyama T, Takeuchi H, Nga TTV, Bui X-T, Tanaka H. Submerged nanofiltration without pre-treatment for direct advanced drinking water treatment. Chemosphere. 2021;265:129056.

  134. Pica NE, Funkhouser J, Yin Y, Zhang Z, Ceres DM, Tong T, Blotevogel J. Electrochemical oxidation of hexafluoropropylene oxide dimer acid (GenX): mechanistic insights and efficient treatment train with nanofiltration. Environ Sci Technol. 2019;53(21):12602–9.

    CAS  Google Scholar 

  135. Pal P, Sardar M, Pal M, Chakrabortty S, Nayak J. Modelling forward osmosis-nanofiltration integrated process for treatment and recirculation of leather industry wastewater. Comput Chem Eng. 2019;127:99–110.

    CAS  Google Scholar 

  136. Giagnorio M, Ricceri F, Tagliabue M, Zaninetta L, Tiraferri A. Hybrid forward osmosis nanofiltration for wastewater reuse: system design. Membranes (Basel). 2019;9(5):61.

    CAS  Google Scholar 

  137. Giagnorio M, Ricceri F, Tiraferri A. Desalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recovery. Water Res. 2019;153:134–43.

    CAS  Google Scholar 

  138. Gönder ZB, Balcıoğlu G, Vergili I, Kaya Y. An integrated electrocoagulation–nanofiltration process for carwash wastewater reuse. Chemosphere. 2020;253:126713.

  139. Vendrell-Puigmitja L, Abril M, Proia L, Espinosa Angona C, Ricart M, Oatley-Radcliffe DL, Williams PM, Zanain M, Llenas L. Assessing the effects of metal mining effluents on freshwater ecosystems using biofilm as an ecological indicator: comparison between nanofiltration and nanofiltration with electrocoagulation treatment technologies. Ecol Indic. 2020;113:106213.

  140. Werner A, Rieger A, Helbig K, Brix B, Zocher J, Haseneder R, Repke J-U. Nanofiltration for the recovery of indium and germanium from bioleaching solutions. Sep Purif Technol. 2019;224:543–52.

    CAS  Google Scholar 

  141. Meschke K, Hansen N, Hofmann R, Haseneder R, Repke J-U. Influence of process parameters on separation performance of strategic elements by polymeric nanofiltration membranes. Sep Purif Technol. 2020;235:116186.

  142. López J, Reig M, Vecino X, Gibert O, Cortina JL. From nanofiltration membrane permeances to design projections for the remediation and valorisation of acid mine waters. Sci Total Environ. 2020;738:139780.

  143. López J, Reig M, Gibert O, Cortina JL. Increasing sustainability on the metallurgical industry by integration of membrane nanofiltration processes: acid recovery. Sep Purif Technol. 2019;226:267–77.

    Google Scholar 

  144. Yun T, Kwak S-Y. Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance. J Environ Manag. 2020;260:110001.

  145. López J, Reig M, Vecino X, Gibert O, Cortina JL. Comparison of acid-resistant ceramic and polymeric nanofiltration membranes for acid mine waters treatment. Chem Eng J. 2020;382:122786.

  146. Reis BG, Araújo ALB, Vieira CC, Amaral MCS, Ferraz HC. Assessing potential of nanofiltration for sulfuric acid plant effluent reclamation: operational and economic aspects. Sep Purif Technol. 2019;222:369–80.

    CAS  Google Scholar 

  147. Motta Cabrera S, Winnubst L, Richter H, Voigt I, Nijmeijer A. Industrial application of ceramic nanofiltration membranes for water treatment in oil sands mines. Sep Purif Technol. 2021;256:117821.

  148. Esteves T, Mota AT, Barbeitos C, Andrade K, Afonso CAM, Ferreira FC. A study on lupin beans process wastewater nanofiltration treatment and lupanine recovery. J Clean Prod. 2020;277:123349.

  149. Tavangar T, Jalali K, Alaei Shahmirzadi MA, Karimi M. Toward real textile wastewater treatment: membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation – nanofiltration process. Sep Purif Technol. 2019;216:115–25.

    CAS  Google Scholar 

  150. Tran TTV, Kumar SR, Lue SJ. Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction. J Membr Sci. 2019;575:38–49.

    CAS  Google Scholar 

  151. Ağtaş M, Yılmaz Ö, Dilaver M, Alp K, Koyuncu İ. Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system. J Clean Prod. 2020;256:120359.

  152. Santibáñez L, Córdova A, Astudillo-Castro C, Illanes A. Effect of the lactose hydrolysis on galacto-oligosaccharides mixtures subjected to nanofiltration: a detailed fractionation analysis. Sep Purif Technol. 2019;222:342–51.

    Google Scholar 

  153. Completo C, Geraldes V, Semião V, Mateus M, Rodrigues M. Comparison between microfluidic tangential flow nanofiltration and centrifugal nanofiltration for the concentration of small-volume samples. J Membr Sci. 2019;578:27–35.

    CAS  Google Scholar 

  154. Schmidt CM, Sprunk M, Löffler R, Hinrichs J. Relating nanofiltration membrane morphology to observed rejection of saccharides. Sep Purif Technol. 2020;239:116550.

  155. Abdellah MH, Liu L, Scholes CA, Freeman BD, Kentish SE. Organic solvent nanofiltration of binary vegetable oil/terpene mixtures: experiments and modelling. J Membr Sci. 2019;573:694–703.

    CAS  Google Scholar 

  156. Cuhorka J, Wallace E, Mikulášek P. Removal of micropollutants from water by commercially available nanofiltration membranes. Sci Total Environ. 2020;720:137474.

  157. Taheri E, Hadi S, Amin MM, Ebrahimi A, Fatehizadeh A, Aminabhavi TM. Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: transport modeling and pore radius estimation. J Environ Manag. 2020;271:111005.

  158. Giacobbo A, Soares EV, Bernardes AM, Rosa MJ, de Pinho MN. Atenolol removal by nanofiltration: a case-specific mass transfer correlation. Water Sci Technol. 2020;81(2):210–6.

    CAS  Google Scholar 

  159. Egea-Corbacho A, Gutiérrez Ruiz S, Quiroga Alonso JM. Removal of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full–scale pilot plant. J Clean Prod. 2019;214:514–23.

    CAS  Google Scholar 

  160. Foureaux AFS, Reis EO, Lebron Y, Moreira V, Santos LV, Amaral MS, Lange LC. Rejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosis. Sep Purif Technol. 2019;212:171–9.

    CAS  Google Scholar 

  161. Cristóvão MB, Torrejais J, Janssens R, Luis P, Van der Bruggen B, Dubey KK, Mandal MK, Bronze MR, Crespo JG, Pereira VJ. Treatment of anticancer drugs in hospital and wastewater effluents using nanofiltration. Sep Purif Technol. 2019;224:273–80.

    Google Scholar 

  162. Xu R, Zhou M, Wang H, Wang X, Wen X. Influences of temperature on the retention of PPCPs by nanofiltration membranes: experiments and modeling assessment. J Membr Sci. 2020;599:117817.

  163. Roy Y, Lienhard JH. A framework to analyze sulfate versus chloride selectivity in nanofiltration. Environ Sci Water Res Technol. 2019;5(3):585–98.

    CAS  Google Scholar 

  164. Kapsch AM, Farcet MR, Wieser A, Ahmad MQ, Miyabayashi T, Baylis SA, Blümel J, Kreil TR. Antibody-enhanced hepatitis E virus nanofiltration during the manufacture of human immunoglobulin. Transfusion. 2020;60(11):2500–7.

    CAS  Google Scholar 

  165. Ideno S, Takahashi K, Yusa K, Sakai K. Quantitative PCR evaluation of parvovirus B19 removal via nanofiltration. J Virol Methods. 2020;275:113755.

  166. Roth NJ, Dichtelmüller HO, Fabbrizzi F, Flechsig E, Gröner A, Gustafson M, Jorquera JI, Kreil TR, Misztela D, Moretti E, Moscardini M, Poelsler G, More J, Roberts P, Wieser A, Gajardo R. Nanofiltration as a robust method contributing to viral safety of plasma-derived therapeutics: 20 yearsʼ experience of the plasma protein manufacturers. Transfusion. 2020;60(11):2661–74.

    CAS  Google Scholar 

  167. Kramer FC, Shang R, Rietveld LC, Heijman SJG. Influence of pH, multivalent counter ions, and membrane fouling on phosphate retention during ceramic nanofiltration. Sep Purif Technol. 2019;227:115675.

  168. Arola K, Mänttäri M, Kallioinen M. Two-stage nanofiltration for purification of membrane bioreactor treated municipal wastewater – minimization of concentrate volume and simultaneous recovery of phosphorus. Sep Purif Technol. 2021;256:117255.

  169. Thomson BM, Tandukar S, Shahi A, Lee CO, Howe KJ. Mineral recovery enhanced desalination (MRED) process: an innovative technology for desalinating hard brackish water. Desalination. 2020;496:114761.

  170. Mohamad N, Reig M, Vecino X, Yong K, Cortina JL. Potential of nanofiltration and reverse osmosis processes for the recovery of high-concentrated furfural streams. J Chem Technol Biotechnol. 2019;94(9):2899–907.

    CAS  Google Scholar 

  171. Bush JA, Vanneste J, Cath TY. Comparison of membrane distillation and high-temperature nanofiltration processes for treatment of silica-saturated water. J Membr Sci. 2019;570:258–69.

    Google Scholar 

  172. Jeong K, Yoon N, Park S, Son M, Lee J, Park J, Cho KH. Optimization of a nanofiltration and membrane capacitive deionization (NF-MCDI) hybrid system: experimental and modeling studies. Desalination. 2020;493:114658.

  173. Nativ P, Fridman-Bishop N, Nir O, Lahav O. Dia-nanofiltration-electrodialysis hybrid process for selective removal of monovalent ions from Mg2+ rich brines. Desalination. 2020;481:114357.

  174. Ten Kate, AJB, Schutyser, MAI, Kuzmanovic, B, Westerink, JB, Manuhutu F, Bargeman G. Thermodynamic perspective on negative retention effects in nanofiltration of concentrated sodium chloride solutions. Sep Purif Technol. 2020;250:117242.

  175. Yang R. Analytical methods for polymer characterization. 1st ed. Milton: Taylor & Francis Group; 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeriah Jegatheesan.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DU, Y., Pramanik, B.K., Zhang, Y. et al. Recent Advances in the Theory and Application of Nanofiltration: a Review. Curr Pollution Rep 8, 51–80 (2022). https://doi.org/10.1007/s40726-021-00208-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00208-1

Keywords

Navigation